| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termoeu2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
termoeu2.a |
⊢ ( 𝜑 → 𝐴 ∈ ( TermO ‘ 𝐶 ) ) |
| 3 |
|
termoeu2.i |
⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) |
| 4 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
| 5 |
4
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 7 |
|
oppctermo |
⊢ ( 𝐴 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐴 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 8 |
2 7
|
sylib |
⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 9 |
4 3
|
oppccic |
⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ ( oppCat ‘ 𝐶 ) ) 𝐵 ) |
| 10 |
6 8 9
|
initoeu2 |
⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 11 |
|
oppctermo |
⊢ ( 𝐵 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐵 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ( TermO ‘ 𝐶 ) ) |