Metamath Proof Explorer


Theorem termoeu2

Description: Terminal objects are essentially unique; if A is a terminal object, then so is every object that is isomorphic to A . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses termoeu2.c ( 𝜑𝐶 ∈ Cat )
termoeu2.a ( 𝜑𝐴 ∈ ( TermO ‘ 𝐶 ) )
termoeu2.i ( 𝜑𝐴 ( ≃𝑐𝐶 ) 𝐵 )
Assertion termoeu2 ( 𝜑𝐵 ∈ ( TermO ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 termoeu2.c ( 𝜑𝐶 ∈ Cat )
2 termoeu2.a ( 𝜑𝐴 ∈ ( TermO ‘ 𝐶 ) )
3 termoeu2.i ( 𝜑𝐴 ( ≃𝑐𝐶 ) 𝐵 )
4 eqid ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 )
5 4 oppccat ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat )
6 1 5 syl ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat )
7 oppctermo ( 𝐴 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐴 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )
8 2 7 sylib ( 𝜑𝐴 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )
9 4 3 oppccic ( 𝜑𝐴 ( ≃𝑐 ‘ ( oppCat ‘ 𝐶 ) ) 𝐵 )
10 6 8 9 initoeu2 ( 𝜑𝐵 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )
11 oppctermo ( 𝐵 ∈ ( TermO ‘ 𝐶 ) ↔ 𝐵 ∈ ( InitO ‘ ( oppCat ‘ 𝐶 ) ) )
12 10 11 sylibr ( 𝜑𝐵 ∈ ( TermO ‘ 𝐶 ) )