Step |
Hyp |
Ref |
Expression |
1 |
|
initoeu1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
initoeu1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) |
3 |
|
initoeu2.i |
⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) |
4 |
|
ciclcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
5 |
1 4
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
6 |
|
cicrcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
7 |
1 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
9 |
|
cicsym |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 ) |
10 |
8 9
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 ) |
11 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
15 |
11 12 8 13 14
|
cic |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 ↔ ∃ 𝑘 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ) |
16 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
17 |
12 16 1
|
isinitoi |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( InitO ‘ 𝐶 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
18 |
2 17
|
mpdan |
⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
20 |
19
|
eleq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
21 |
20
|
eubidv |
⊢ ( 𝑎 = 𝑏 → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
22 |
21
|
rspcva |
⊢ ( ( 𝑏 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
23 |
|
nfv |
⊢ Ⅎ ℎ 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) |
24 |
|
nfv |
⊢ Ⅎ 𝑓 ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) |
25 |
|
eleq1w |
⊢ ( 𝑓 = ℎ → ( 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
26 |
23 24 25
|
cbveuw |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ↔ ∃! ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
27 |
|
euex |
⊢ ( ∃! ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃ ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
29 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
30 |
29
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
31 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
32 |
12 16 11 28 30 31
|
isohom |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ⊆ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
33 |
32
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
34 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
35 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝐶 ∈ Cat ) |
36 |
30
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
37 |
31
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
40 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
41 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
42 |
12 16 34 35 36 37 39 40 41
|
catcocl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
43 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → 𝜑 ) |
44 |
|
df-3an |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ↔ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) |
45 |
44
|
biimpri |
⊢ ( ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) |
46 |
45
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
49 |
41
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
50 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
51 |
1 2 12 16 11 34
|
initoeu2lem2 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
52 |
43 46 48 49 50 51
|
syl113anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ∧ ( ℎ ( 〈 𝐵 , 𝐴 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑘 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
53 |
42 52
|
mpdan |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) ∧ ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
54 |
53
|
ex |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → ( ( 𝑘 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ∧ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
55 |
33 54
|
mpand |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
56 |
55
|
ex |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
57 |
56
|
com23 |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
58 |
57
|
ex |
⊢ ( 𝜑 → ( ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
59 |
58
|
com15 |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
60 |
59
|
expd |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
61 |
60
|
com24 |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
62 |
61
|
com12 |
⊢ ( ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
63 |
62
|
exlimiv |
⊢ ( ∃ ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
64 |
27 63
|
syl |
⊢ ( ∃! ℎ ℎ ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
65 |
26 64
|
sylbi |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) ) |
66 |
65
|
pm2.43i |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
67 |
66
|
com12 |
⊢ ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝑏 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑏 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
69 |
22 68
|
mpd |
⊢ ( ( 𝑏 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
70 |
69
|
ex |
⊢ ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝜑 → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
71 |
70
|
com15 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
72 |
71
|
adantld |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) ) |
73 |
18 72
|
mpd |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) ) |
74 |
73
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
75 |
74
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑘 𝑘 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
76 |
15 75
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
77 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → ( 𝐵 ( ≃𝑐 ‘ 𝐶 ) 𝐴 → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) ) |
78 |
10 77
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
79 |
78
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑏 ∈ ( Base ‘ 𝐶 ) → ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
80 |
79
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
81 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
82 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
83 |
12 16 81 82
|
isinito |
⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐶 ) ∃! 𝑔 𝑔 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝑏 ) ) ) |
84 |
80 83
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |
85 |
84
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → ( ( 𝐴 ∈ ( Base ‘ 𝐶 ) ∧ 𝐵 ∈ ( Base ‘ 𝐶 ) ) → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) ) |
86 |
5 7 85
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |
87 |
3 86
|
mpdan |
⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) |