| Step | Hyp | Ref | Expression | 
						
							| 1 |  | termoeu1.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | termoeu1.a | ⊢ ( 𝜑  →  𝐴  ∈  ( TermO ‘ 𝐶 ) ) | 
						
							| 3 |  | termoeu1.b | ⊢ ( 𝜑  →  𝐵  ∈  ( TermO ‘ 𝐶 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 5 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 6 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 7 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐶  ∈  Cat ) | 
						
							| 8 |  | termoo | ⊢ ( 𝐶  ∈  Cat  →  ( 𝐴  ∈  ( TermO ‘ 𝐶 )  →  𝐴  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 9 | 1 2 8 | sylc | ⊢ ( 𝜑  →  𝐴  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐴  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 11 |  | termoo | ⊢ ( 𝐶  ∈  Cat  →  ( 𝐵  ∈  ( TermO ‘ 𝐶 )  →  𝐵  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 12 | 1 3 11 | sylc | ⊢ ( 𝜑  →  𝐵  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐵  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 14 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 15 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 16 | 4 5 6 7 10 13 10 14 15 | catcocl | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐴 ) ) | 
						
							| 17 | 4 5 1 | termoid | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( TermO ‘ 𝐶 ) )  →  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐴 )  =  { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) | 
						
							| 18 | 2 17 | mpdan | ⊢ ( 𝜑  →  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐴 )  =  { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐴 )  =  { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐴 )  ↔  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  ∈  { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) } ) ) | 
						
							| 21 |  | elsni | ⊢ ( ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  ∈  { ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) }  →  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) | 
						
							| 22 | 20 21 | biimtrdi | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐴 )  →  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 23 | 16 22 | mpd | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) | 
						
							| 24 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 25 |  | eqid | ⊢ ( Sect ‘ 𝐶 )  =  ( Sect ‘ 𝐶 ) | 
						
							| 26 | 4 5 6 24 25 7 10 13 14 15 | issect2 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺  ↔  ( 𝐺 ( 〈 𝐴 ,  𝐵 〉 ( comp ‘ 𝐶 ) 𝐴 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐴 ) ) ) | 
						
							| 27 | 23 26 | mpbird | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺 ) | 
						
							| 28 | 4 5 6 7 13 10 13 15 14 | catcocl | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐵 ) ) | 
						
							| 29 | 4 5 1 | termoid | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( TermO ‘ 𝐶 ) )  →  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐵 )  =  { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) | 
						
							| 30 | 3 29 | mpdan | ⊢ ( 𝜑  →  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐵 )  =  { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) | 
						
							| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐵 )  =  { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) | 
						
							| 32 | 31 | eleq2d | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐵 )  ↔  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  ∈  { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) } ) ) | 
						
							| 33 |  | elsni | ⊢ ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  ∈  { ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) }  →  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) | 
						
							| 34 | 32 33 | biimtrdi | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐵 )  →  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) ) | 
						
							| 35 | 28 34 | mpd | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) | 
						
							| 36 | 4 5 6 24 25 7 13 10 15 14 | issect2 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹  ↔  ( 𝐹 ( 〈 𝐵 ,  𝐴 〉 ( comp ‘ 𝐶 ) 𝐵 ) 𝐺 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝐵 ) ) ) | 
						
							| 37 | 35 36 | mpbird | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) | 
						
							| 38 |  | eqid | ⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 ) | 
						
							| 39 | 4 38 1 9 12 25 | isinv | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺  ↔  ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺  ∧  𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) ) ) | 
						
							| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  ( 𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺  ↔  ( 𝐹 ( 𝐴 ( Sect ‘ 𝐶 ) 𝐵 ) 𝐺  ∧  𝐺 ( 𝐵 ( Sect ‘ 𝐶 ) 𝐴 ) 𝐹 ) ) ) | 
						
							| 41 | 27 37 40 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝐺  ∈  ( 𝐵 ( Hom  ‘ 𝐶 ) 𝐴 )  ∧  𝐹  ∈  ( 𝐴 ( Hom  ‘ 𝐶 ) 𝐵 ) )  →  𝐹 ( 𝐴 ( Inv ‘ 𝐶 ) 𝐵 ) 𝐺 ) |