Metamath Proof Explorer


Theorem initoeu2

Description: Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in Adamek p. 102. (Contributed by AV, 10-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φ C Cat
initoeu1.a φ A InitO C
initoeu2.i φ A 𝑐 C B
Assertion initoeu2 φ B InitO C

Proof

Step Hyp Ref Expression
1 initoeu1.c φ C Cat
2 initoeu1.a φ A InitO C
3 initoeu2.i φ A 𝑐 C B
4 ciclcl C Cat A 𝑐 C B A Base C
5 1 4 sylan φ A 𝑐 C B A Base C
6 cicrcl C Cat A 𝑐 C B B Base C
7 1 6 sylan φ A 𝑐 C B B Base C
8 1 adantr φ A Base C B Base C C Cat
9 cicsym C Cat A 𝑐 C B B 𝑐 C A
10 8 9 sylan φ A Base C B Base C A 𝑐 C B B 𝑐 C A
11 eqid Iso C = Iso C
12 eqid Base C = Base C
13 simprr φ A Base C B Base C B Base C
14 simprl φ A Base C B Base C A Base C
15 11 12 8 13 14 cic φ A Base C B Base C B 𝑐 C A k k B Iso C A
16 eqid Hom C = Hom C
17 12 16 1 isinitoi φ A InitO C A Base C a Base C ∃! f f A Hom C a
18 2 17 mpdan φ A Base C a Base C ∃! f f A Hom C a
19 oveq2 a = b A Hom C a = A Hom C b
20 19 eleq2d a = b f A Hom C a f A Hom C b
21 20 eubidv a = b ∃! f f A Hom C a ∃! f f A Hom C b
22 21 rspcva b Base C a Base C ∃! f f A Hom C a ∃! f f A Hom C b
23 nfv h f A Hom C b
24 nfv f h A Hom C b
25 eleq1w f = h f A Hom C b h A Hom C b
26 23 24 25 cbveuw ∃! f f A Hom C b ∃! h h A Hom C b
27 euex ∃! h h A Hom C b h h A Hom C b
28 1 adantr φ A Base C B Base C b Base C C Cat
29 simpr A Base C B Base C B Base C
30 29 ad2antrl φ A Base C B Base C b Base C B Base C
31 simprll φ A Base C B Base C b Base C A Base C
32 12 16 11 28 30 31 isohom φ A Base C B Base C b Base C B Iso C A B Hom C A
33 32 sselda φ A Base C B Base C b Base C k B Iso C A k B Hom C A
34 eqid comp C = comp C
35 28 ad2antrr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b C Cat
36 30 ad2antrr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b B Base C
37 31 ad2antrr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b A Base C
38 simprr φ A Base C B Base C b Base C b Base C
39 38 ad2antrr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b b Base C
40 simprl φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b k B Hom C A
41 simprr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h A Hom C b
42 12 16 34 35 36 37 39 40 41 catcocl φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h B A comp C b k B Hom C b
43 simp-4l φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h B A comp C b k B Hom C b φ
44 df-3an A Base C B Base C b Base C A Base C B Base C b Base C
45 44 biimpri A Base C B Base C b Base C A Base C B Base C b Base C
46 45 ad4antlr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h B A comp C b k B Hom C b A Base C B Base C b Base C
47 simpr φ A Base C B Base C b Base C k B Iso C A k B Iso C A
48 47 ad2antrr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h B A comp C b k B Hom C b k B Iso C A
49 41 adantr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h B A comp C b k B Hom C b h A Hom C b
50 simpr φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h B A comp C b k B Hom C b h B A comp C b k B Hom C b
51 1 2 12 16 11 34 initoeu2lem2 φ A Base C B Base C b Base C k B Iso C A h A Hom C b h B A comp C b k B Hom C b ∃! f f A Hom C b ∃! g g B Hom C b
52 43 46 48 49 50 51 syl113anc φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b h B A comp C b k B Hom C b ∃! f f A Hom C b ∃! g g B Hom C b
53 42 52 mpdan φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b ∃! f f A Hom C b ∃! g g B Hom C b
54 53 ex φ A Base C B Base C b Base C k B Iso C A k B Hom C A h A Hom C b ∃! f f A Hom C b ∃! g g B Hom C b
55 33 54 mpand φ A Base C B Base C b Base C k B Iso C A h A Hom C b ∃! f f A Hom C b ∃! g g B Hom C b
56 55 ex φ A Base C B Base C b Base C k B Iso C A h A Hom C b ∃! f f A Hom C b ∃! g g B Hom C b
57 56 com23 φ A Base C B Base C b Base C h A Hom C b k B Iso C A ∃! f f A Hom C b ∃! g g B Hom C b
58 57 ex φ A Base C B Base C b Base C h A Hom C b k B Iso C A ∃! f f A Hom C b ∃! g g B Hom C b
59 58 com15 ∃! f f A Hom C b A Base C B Base C b Base C h A Hom C b k B Iso C A φ ∃! g g B Hom C b
60 59 expd ∃! f f A Hom C b A Base C B Base C b Base C h A Hom C b k B Iso C A φ ∃! g g B Hom C b
61 60 com24 ∃! f f A Hom C b h A Hom C b b Base C A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
62 61 com12 h A Hom C b ∃! f f A Hom C b b Base C A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
63 62 exlimiv h h A Hom C b ∃! f f A Hom C b b Base C A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
64 27 63 syl ∃! h h A Hom C b ∃! f f A Hom C b b Base C A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
65 26 64 sylbi ∃! f f A Hom C b ∃! f f A Hom C b b Base C A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
66 65 pm2.43i ∃! f f A Hom C b b Base C A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
67 66 com12 b Base C ∃! f f A Hom C b A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
68 67 adantr b Base C a Base C ∃! f f A Hom C a ∃! f f A Hom C b A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
69 22 68 mpd b Base C a Base C ∃! f f A Hom C a A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
70 69 ex b Base C a Base C ∃! f f A Hom C a A Base C B Base C k B Iso C A φ ∃! g g B Hom C b
71 70 com15 φ a Base C ∃! f f A Hom C a A Base C B Base C k B Iso C A b Base C ∃! g g B Hom C b
72 71 adantld φ A Base C a Base C ∃! f f A Hom C a A Base C B Base C k B Iso C A b Base C ∃! g g B Hom C b
73 18 72 mpd φ A Base C B Base C k B Iso C A b Base C ∃! g g B Hom C b
74 73 imp φ A Base C B Base C k B Iso C A b Base C ∃! g g B Hom C b
75 74 exlimdv φ A Base C B Base C k k B Iso C A b Base C ∃! g g B Hom C b
76 15 75 sylbid φ A Base C B Base C B 𝑐 C A b Base C ∃! g g B Hom C b
77 76 adantr φ A Base C B Base C A 𝑐 C B B 𝑐 C A b Base C ∃! g g B Hom C b
78 10 77 mpd φ A Base C B Base C A 𝑐 C B b Base C ∃! g g B Hom C b
79 78 an32s φ A 𝑐 C B A Base C B Base C b Base C ∃! g g B Hom C b
80 79 ralrimiv φ A 𝑐 C B A Base C B Base C b Base C ∃! g g B Hom C b
81 1 ad2antrr φ A 𝑐 C B A Base C B Base C C Cat
82 simprr φ A 𝑐 C B A Base C B Base C B Base C
83 12 16 81 82 isinito φ A 𝑐 C B A Base C B Base C B InitO C b Base C ∃! g g B Hom C b
84 80 83 mpbird φ A 𝑐 C B A Base C B Base C B InitO C
85 84 ex φ A 𝑐 C B A Base C B Base C B InitO C
86 5 7 85 mp2and φ A 𝑐 C B B InitO C
87 3 86 mpdan φ B InitO C