Step |
Hyp |
Ref |
Expression |
1 |
|
initoeu1.c |
|
2 |
|
initoeu1.a |
|
3 |
|
initoeu2.i |
|
4 |
|
ciclcl |
|
5 |
1 4
|
sylan |
|
6 |
|
cicrcl |
|
7 |
1 6
|
sylan |
|
8 |
1
|
adantr |
|
9 |
|
cicsym |
|
10 |
8 9
|
sylan |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
simprr |
|
14 |
|
simprl |
|
15 |
11 12 8 13 14
|
cic |
|
16 |
|
eqid |
|
17 |
12 16 1
|
isinitoi |
|
18 |
2 17
|
mpdan |
|
19 |
|
oveq2 |
|
20 |
19
|
eleq2d |
|
21 |
20
|
eubidv |
|
22 |
21
|
rspcva |
|
23 |
|
nfv |
|
24 |
|
nfv |
|
25 |
|
eleq1w |
|
26 |
23 24 25
|
cbveuw |
|
27 |
|
euex |
|
28 |
1
|
adantr |
|
29 |
|
simpr |
|
30 |
29
|
ad2antrl |
|
31 |
|
simprll |
|
32 |
12 16 11 28 30 31
|
isohom |
|
33 |
32
|
sselda |
|
34 |
|
eqid |
|
35 |
28
|
ad2antrr |
|
36 |
30
|
ad2antrr |
|
37 |
31
|
ad2antrr |
|
38 |
|
simprr |
|
39 |
38
|
ad2antrr |
|
40 |
|
simprl |
|
41 |
|
simprr |
|
42 |
12 16 34 35 36 37 39 40 41
|
catcocl |
|
43 |
|
simp-4l |
|
44 |
|
df-3an |
|
45 |
44
|
biimpri |
|
46 |
45
|
ad4antlr |
|
47 |
|
simpr |
|
48 |
47
|
ad2antrr |
|
49 |
41
|
adantr |
|
50 |
|
simpr |
|
51 |
1 2 12 16 11 34
|
initoeu2lem2 |
|
52 |
43 46 48 49 50 51
|
syl113anc |
|
53 |
42 52
|
mpdan |
|
54 |
53
|
ex |
|
55 |
33 54
|
mpand |
|
56 |
55
|
ex |
|
57 |
56
|
com23 |
|
58 |
57
|
ex |
|
59 |
58
|
com15 |
|
60 |
59
|
expd |
|
61 |
60
|
com24 |
|
62 |
61
|
com12 |
|
63 |
62
|
exlimiv |
|
64 |
27 63
|
syl |
|
65 |
26 64
|
sylbi |
|
66 |
65
|
pm2.43i |
|
67 |
66
|
com12 |
|
68 |
67
|
adantr |
|
69 |
22 68
|
mpd |
|
70 |
69
|
ex |
|
71 |
70
|
com15 |
|
72 |
71
|
adantld |
|
73 |
18 72
|
mpd |
|
74 |
73
|
imp |
|
75 |
74
|
exlimdv |
|
76 |
15 75
|
sylbid |
|
77 |
76
|
adantr |
|
78 |
10 77
|
mpd |
|
79 |
78
|
an32s |
|
80 |
79
|
ralrimiv |
|
81 |
1
|
ad2antrr |
|
82 |
|
simprr |
|
83 |
12 16 81 82
|
isinito |
|
84 |
80 83
|
mpbird |
|
85 |
84
|
ex |
|
86 |
5 7 85
|
mp2and |
|
87 |
3 86
|
mpdan |
|