Metamath Proof Explorer


Theorem termoo2

Description: A terminal object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypothesis initoo2.b B = Base C
Assertion termoo2 O TermO C O B

Proof

Step Hyp Ref Expression
1 initoo2.b B = Base C
2 eqid Hom C = Hom C
3 termorcl O TermO C C Cat
4 1 2 3 istermoi O TermO C O TermO C O B b B ∃! h h b Hom C O
5 4 anidms O TermO C O B b B ∃! h h b Hom C O
6 5 simpld O TermO C O B