Description: A terminal object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | initoo2.b | |- B = ( Base ` C ) |
|
| Assertion | termoo2 | |- ( O e. ( TermO ` C ) -> O e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoo2.b | |- B = ( Base ` C ) |
|
| 2 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 3 | termorcl | |- ( O e. ( TermO ` C ) -> C e. Cat ) |
|
| 4 | 1 2 3 | istermoi | |- ( ( O e. ( TermO ` C ) /\ O e. ( TermO ` C ) ) -> ( O e. B /\ A. b e. B E! h h e. ( b ( Hom ` C ) O ) ) ) |
| 5 | 4 | anidms | |- ( O e. ( TermO ` C ) -> ( O e. B /\ A. b e. B E! h h e. ( b ( Hom ` C ) O ) ) ) |
| 6 | 5 | simpld | |- ( O e. ( TermO ` C ) -> O e. B ) |