Metamath Proof Explorer


Theorem termoo2

Description: A terminal object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypothesis initoo2.b 𝐵 = ( Base ‘ 𝐶 )
Assertion termoo2 ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝑂𝐵 )

Proof

Step Hyp Ref Expression
1 initoo2.b 𝐵 = ( Base ‘ 𝐶 )
2 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
3 termorcl ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝐶 ∈ Cat )
4 1 2 3 istermoi ( ( 𝑂 ∈ ( TermO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂𝐵 ∧ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑂 ) ) )
5 4 anidms ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → ( 𝑂𝐵 ∧ ∀ 𝑏𝐵 ∃! ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑂 ) ) )
6 5 simpld ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝑂𝐵 )