Description: A terminal object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | initoo2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| Assertion | termoo2 | ⊢ ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝑂 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoo2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 3 | termorcl | ⊢ ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 4 | 1 2 3 | istermoi | ⊢ ( ( 𝑂 ∈ ( TermO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑂 ∈ 𝐵 ∧ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑂 ) ) ) |
| 5 | 4 | anidms | ⊢ ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → ( 𝑂 ∈ 𝐵 ∧ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝐶 ) 𝑂 ) ) ) |
| 6 | 5 | simpld | ⊢ ( 𝑂 ∈ ( TermO ‘ 𝐶 ) → 𝑂 ∈ 𝐵 ) |