Metamath Proof Explorer


Theorem termccisoeu

Description: The isomorphism between terminal categories is unique. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses termcciso.c C = CatCat U
termcciso.b B = Base C
termcciso.x φ X B
termcciso.y φ Y B
termcciso.t No typesetting found for |- ( ph -> X e. TermCat ) with typecode |-
termccisoeu.y No typesetting found for |- ( ph -> Y e. TermCat ) with typecode |-
Assertion termccisoeu φ ∃! f f X Iso C Y

Proof

Step Hyp Ref Expression
1 termcciso.c C = CatCat U
2 termcciso.b B = Base C
3 termcciso.x φ X B
4 termcciso.y φ Y B
5 termcciso.t Could not format ( ph -> X e. TermCat ) : No typesetting found for |- ( ph -> X e. TermCat ) with typecode |-
6 termccisoeu.y Could not format ( ph -> Y e. TermCat ) : No typesetting found for |- ( ph -> Y e. TermCat ) with typecode |-
7 1 2 elbasfv X B U V
8 3 7 syl φ U V
9 1 catccat U V C Cat
10 8 9 syl φ C Cat
11 1 2 8 catcbas φ B = U Cat
12 3 11 eleqtrd φ X U Cat
13 12 elin1d φ X U
14 1 8 13 5 termcterm φ X TermO C
15 4 11 eleqtrd φ Y U Cat
16 15 elin1d φ Y U
17 1 8 16 6 termcterm φ Y TermO C
18 10 14 17 termoeu1 φ ∃! f f X Iso C Y