| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcciso.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
termcciso.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termcciso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
termcciso.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
termcciso.t |
⊢ ( 𝜑 → 𝑋 ∈ TermCat ) |
| 6 |
|
termccisoeu.y |
⊢ ( 𝜑 → 𝑌 ∈ TermCat ) |
| 7 |
1 2
|
elbasfv |
⊢ ( 𝑋 ∈ 𝐵 → 𝑈 ∈ V ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 9 |
1
|
catccat |
⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 11 |
1 2 8
|
catcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 12 |
3 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
| 13 |
12
|
elin1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 14 |
1 8 13 5
|
termcterm |
⊢ ( 𝜑 → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 15 |
4 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑈 ∩ Cat ) ) |
| 16 |
15
|
elin1d |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| 17 |
1 8 16 6
|
termcterm |
⊢ ( 𝜑 → 𝑌 ∈ ( TermO ‘ 𝐶 ) ) |
| 18 |
10 14 17
|
termoeu1 |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |