Metamath Proof Explorer


Theorem termccisoeu

Description: The isomorphism between terminal categories is unique. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses termcciso.c 𝐶 = ( CatCat ‘ 𝑈 )
termcciso.b 𝐵 = ( Base ‘ 𝐶 )
termcciso.x ( 𝜑𝑋𝐵 )
termcciso.y ( 𝜑𝑌𝐵 )
termcciso.t ( 𝜑𝑋 ∈ TermCat )
termccisoeu.y ( 𝜑𝑌 ∈ TermCat )
Assertion termccisoeu ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 termcciso.c 𝐶 = ( CatCat ‘ 𝑈 )
2 termcciso.b 𝐵 = ( Base ‘ 𝐶 )
3 termcciso.x ( 𝜑𝑋𝐵 )
4 termcciso.y ( 𝜑𝑌𝐵 )
5 termcciso.t ( 𝜑𝑋 ∈ TermCat )
6 termccisoeu.y ( 𝜑𝑌 ∈ TermCat )
7 1 2 elbasfv ( 𝑋𝐵𝑈 ∈ V )
8 3 7 syl ( 𝜑𝑈 ∈ V )
9 1 catccat ( 𝑈 ∈ V → 𝐶 ∈ Cat )
10 8 9 syl ( 𝜑𝐶 ∈ Cat )
11 1 2 8 catcbas ( 𝜑𝐵 = ( 𝑈 ∩ Cat ) )
12 3 11 eleqtrd ( 𝜑𝑋 ∈ ( 𝑈 ∩ Cat ) )
13 12 elin1d ( 𝜑𝑋𝑈 )
14 1 8 13 5 termcterm ( 𝜑𝑋 ∈ ( TermO ‘ 𝐶 ) )
15 4 11 eleqtrd ( 𝜑𝑌 ∈ ( 𝑈 ∩ Cat ) )
16 15 elin1d ( 𝜑𝑌𝑈 )
17 1 8 16 6 termcterm ( 𝜑𝑌 ∈ ( TermO ‘ 𝐶 ) )
18 10 14 17 termoeu1 ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) )