Metamath Proof Explorer


Theorem catcbas

Description: Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c 𝐶 = ( CatCat ‘ 𝑈 )
catcbas.b 𝐵 = ( Base ‘ 𝐶 )
catcbas.u ( 𝜑𝑈𝑉 )
Assertion catcbas ( 𝜑𝐵 = ( 𝑈 ∩ Cat ) )

Proof

Step Hyp Ref Expression
1 catcbas.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 catcbas.u ( 𝜑𝑈𝑉 )
4 eqidd ( 𝜑 → ( 𝑈 ∩ Cat ) = ( 𝑈 ∩ Cat ) )
5 eqidd ( 𝜑 → ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) = ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) )
6 eqidd ( 𝜑 → ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) = ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) )
7 1 3 4 5 6 catcval ( 𝜑𝐶 = { ⟨ ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ } )
8 catstr { ⟨ ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ } Struct ⟨ 1 , 1 5 ⟩
9 baseid Base = Slot ( Base ‘ ndx )
10 snsstp1 { ⟨ ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , ( 𝑈 ∩ Cat ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥 ∈ ( 𝑈 ∩ Cat ) , 𝑦 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝑈 ∩ Cat ) × ( 𝑈 ∩ Cat ) ) , 𝑧 ∈ ( 𝑈 ∩ Cat ) ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ }
11 inex1g ( 𝑈𝑉 → ( 𝑈 ∩ Cat ) ∈ V )
12 3 11 syl ( 𝜑 → ( 𝑈 ∩ Cat ) ∈ V )
13 7 8 9 10 12 2 strfv3 ( 𝜑𝐵 = ( 𝑈 ∩ Cat ) )