| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcciso.c |
|- C = ( CatCat ` U ) |
| 2 |
|
termcciso.b |
|- B = ( Base ` C ) |
| 3 |
|
termcciso.x |
|- ( ph -> X e. B ) |
| 4 |
|
termcciso.y |
|- ( ph -> Y e. B ) |
| 5 |
|
termcciso.t |
|- ( ph -> X e. TermCat ) |
| 6 |
|
termccisoeu.y |
|- ( ph -> Y e. TermCat ) |
| 7 |
1 2
|
elbasfv |
|- ( X e. B -> U e. _V ) |
| 8 |
3 7
|
syl |
|- ( ph -> U e. _V ) |
| 9 |
1
|
catccat |
|- ( U e. _V -> C e. Cat ) |
| 10 |
8 9
|
syl |
|- ( ph -> C e. Cat ) |
| 11 |
1 2 8
|
catcbas |
|- ( ph -> B = ( U i^i Cat ) ) |
| 12 |
3 11
|
eleqtrd |
|- ( ph -> X e. ( U i^i Cat ) ) |
| 13 |
12
|
elin1d |
|- ( ph -> X e. U ) |
| 14 |
1 8 13 5
|
termcterm |
|- ( ph -> X e. ( TermO ` C ) ) |
| 15 |
4 11
|
eleqtrd |
|- ( ph -> Y e. ( U i^i Cat ) ) |
| 16 |
15
|
elin1d |
|- ( ph -> Y e. U ) |
| 17 |
1 8 16 6
|
termcterm |
|- ( ph -> Y e. ( TermO ` C ) ) |
| 18 |
10 14 17
|
termoeu1 |
|- ( ph -> E! f f e. ( X ( Iso ` C ) Y ) ) |