| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( CatCat ` { C , ( SetCat ` 1o ) } ) = ( CatCat ` { C , ( SetCat ` 1o ) } ) |
| 2 |
|
fvex |
|- ( SetCat ` 1o ) e. _V |
| 3 |
2
|
prid2 |
|- ( SetCat ` 1o ) e. { C , ( SetCat ` 1o ) } |
| 4 |
|
setc1oterm |
|- ( SetCat ` 1o ) e. TermCat |
| 5 |
3 4
|
elini |
|- ( SetCat ` 1o ) e. ( { C , ( SetCat ` 1o ) } i^i TermCat ) |
| 6 |
5
|
ne0ii |
|- ( { C , ( SetCat ` 1o ) } i^i TermCat ) =/= (/) |
| 7 |
6
|
a1i |
|- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> ( { C , ( SetCat ` 1o ) } i^i TermCat ) =/= (/) ) |
| 8 |
4
|
a1i |
|- ( T. -> ( SetCat ` 1o ) e. TermCat ) |
| 9 |
8
|
termccd |
|- ( T. -> ( SetCat ` 1o ) e. Cat ) |
| 10 |
9
|
mptru |
|- ( SetCat ` 1o ) e. Cat |
| 11 |
3 10
|
elini |
|- ( SetCat ` 1o ) e. ( { C , ( SetCat ` 1o ) } i^i Cat ) |
| 12 |
|
oveq1 |
|- ( d = ( SetCat ` 1o ) -> ( d Func C ) = ( ( SetCat ` 1o ) Func C ) ) |
| 13 |
12
|
eleq2d |
|- ( d = ( SetCat ` 1o ) -> ( f e. ( d Func C ) <-> f e. ( ( SetCat ` 1o ) Func C ) ) ) |
| 14 |
13
|
eubidv |
|- ( d = ( SetCat ` 1o ) -> ( E! f f e. ( d Func C ) <-> E! f f e. ( ( SetCat ` 1o ) Func C ) ) ) |
| 15 |
14
|
rspcv |
|- ( ( SetCat ` 1o ) e. ( { C , ( SetCat ` 1o ) } i^i Cat ) -> ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> E! f f e. ( ( SetCat ` 1o ) Func C ) ) ) |
| 16 |
11 15
|
ax-mp |
|- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> E! f f e. ( ( SetCat ` 1o ) Func C ) ) |
| 17 |
|
euen1b |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o <-> E! f f e. ( ( SetCat ` 1o ) Func C ) ) |
| 18 |
16 17
|
sylibr |
|- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> ( ( SetCat ` 1o ) Func C ) ~~ 1o ) |
| 19 |
|
eqid |
|- ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) |
| 20 |
|
prex |
|- { C , ( SetCat ` 1o ) } e. _V |
| 21 |
20
|
a1i |
|- ( T. -> { C , ( SetCat ` 1o ) } e. _V ) |
| 22 |
1 19 21
|
catcbas |
|- ( T. -> ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
| 23 |
22
|
mptru |
|- ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( { C , ( SetCat ` 1o ) } i^i Cat ) |
| 24 |
23
|
eqcomi |
|- ( { C , ( SetCat ` 1o ) } i^i Cat ) = ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) |
| 25 |
|
eqid |
|- ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) |
| 26 |
1
|
catccat |
|- ( { C , ( SetCat ` 1o ) } e. _V -> ( CatCat ` { C , ( SetCat ` 1o ) } ) e. Cat ) |
| 27 |
20 26
|
ax-mp |
|- ( CatCat ` { C , ( SetCat ` 1o ) } ) e. Cat |
| 28 |
27
|
a1i |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( CatCat ` { C , ( SetCat ` 1o ) } ) e. Cat ) |
| 29 |
|
euex |
|- ( E! f f e. ( ( SetCat ` 1o ) Func C ) -> E. f f e. ( ( SetCat ` 1o ) Func C ) ) |
| 30 |
|
relfunc |
|- Rel ( ( SetCat ` 1o ) Func C ) |
| 31 |
|
1st2ndbr |
|- ( ( Rel ( ( SetCat ` 1o ) Func C ) /\ f e. ( ( SetCat ` 1o ) Func C ) ) -> ( 1st ` f ) ( ( SetCat ` 1o ) Func C ) ( 2nd ` f ) ) |
| 32 |
30 31
|
mpan |
|- ( f e. ( ( SetCat ` 1o ) Func C ) -> ( 1st ` f ) ( ( SetCat ` 1o ) Func C ) ( 2nd ` f ) ) |
| 33 |
32
|
funcrcl3 |
|- ( f e. ( ( SetCat ` 1o ) Func C ) -> C e. Cat ) |
| 34 |
33
|
exlimiv |
|- ( E. f f e. ( ( SetCat ` 1o ) Func C ) -> C e. Cat ) |
| 35 |
29 34
|
syl |
|- ( E! f f e. ( ( SetCat ` 1o ) Func C ) -> C e. Cat ) |
| 36 |
17 35
|
sylbi |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> C e. Cat ) |
| 37 |
|
prid1g |
|- ( C e. Cat -> C e. { C , ( SetCat ` 1o ) } ) |
| 38 |
36 37
|
syl |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> C e. { C , ( SetCat ` 1o ) } ) |
| 39 |
38 36
|
elind |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> C e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
| 40 |
24 25 28 39
|
istermo |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) ) ) |
| 41 |
20
|
a1i |
|- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> { C , ( SetCat ` 1o ) } e. _V ) |
| 42 |
|
simpr |
|- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
| 43 |
39
|
adantr |
|- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> C e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
| 44 |
1 24 41 25 42 43
|
catchom |
|- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) = ( d Func C ) ) |
| 45 |
44
|
eleq2d |
|- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> ( f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) <-> f e. ( d Func C ) ) ) |
| 46 |
45
|
eubidv |
|- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> ( E! f f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) <-> E! f f e. ( d Func C ) ) ) |
| 47 |
46
|
ralbidva |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) ) ) |
| 48 |
40 47
|
bitrd |
|- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) ) ) |
| 49 |
18 48
|
syl |
|- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> ( C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) ) ) |
| 50 |
49
|
ibir |
|- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) ) |
| 51 |
1 7 50
|
termcterm2 |
|- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> C e. TermCat ) |