| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eufunc.f |
|- ( ph -> E! f f e. ( C Func D ) ) |
| 2 |
|
eufunc.a |
|- A = ( Base ` C ) |
| 3 |
|
eufunc.0 |
|- ( ph -> A =/= (/) ) |
| 4 |
|
eufunc.b |
|- B = ( Base ` D ) |
| 5 |
|
euex |
|- ( E! f f e. ( C Func D ) -> E. f f e. ( C Func D ) ) |
| 6 |
|
simpr |
|- ( ( f e. ( C Func D ) /\ B = (/) ) -> B = (/) ) |
| 7 |
|
simpl |
|- ( ( f e. ( C Func D ) /\ B = (/) ) -> f e. ( C Func D ) ) |
| 8 |
2 4 6 7
|
func0g2 |
|- ( ( f e. ( C Func D ) /\ B = (/) ) -> A = (/) ) |
| 9 |
8
|
ex |
|- ( f e. ( C Func D ) -> ( B = (/) -> A = (/) ) ) |
| 10 |
9
|
exlimiv |
|- ( E. f f e. ( C Func D ) -> ( B = (/) -> A = (/) ) ) |
| 11 |
1 5 10
|
3syl |
|- ( ph -> ( B = (/) -> A = (/) ) ) |
| 12 |
11
|
imp |
|- ( ( ph /\ B = (/) ) -> A = (/) ) |
| 13 |
3 12
|
mteqand |
|- ( ph -> B =/= (/) ) |
| 14 |
|
n0 |
|- ( B =/= (/) <-> E. x x e. B ) |
| 15 |
13 14
|
sylib |
|- ( ph -> E. x x e. B ) |
| 16 |
1 2 3 4
|
eufunclem |
|- ( ph -> B ~<_ 1o ) |
| 17 |
|
modom2 |
|- ( E* x x e. B <-> B ~<_ 1o ) |
| 18 |
16 17
|
sylibr |
|- ( ph -> E* x x e. B ) |
| 19 |
|
df-eu |
|- ( E! x x e. B <-> ( E. x x e. B /\ E* x x e. B ) ) |
| 20 |
15 18 19
|
sylanbrc |
|- ( ph -> E! x x e. B ) |