| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eufunc.f |
|- ( ph -> E! f f e. ( C Func D ) ) |
| 2 |
|
eufunc.a |
|- A = ( Base ` C ) |
| 3 |
|
eufunc.0 |
|- ( ph -> A =/= (/) ) |
| 4 |
|
eufunc.b |
|- B = ( Base ` D ) |
| 5 |
|
eqid |
|- ( D DiagFunc C ) = ( D DiagFunc C ) |
| 6 |
|
euex |
|- ( E! f f e. ( C Func D ) -> E. f f e. ( C Func D ) ) |
| 7 |
1 6
|
syl |
|- ( ph -> E. f f e. ( C Func D ) ) |
| 8 |
|
relfunc |
|- Rel ( C Func D ) |
| 9 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 10 |
8 9
|
mpan |
|- ( f e. ( C Func D ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 11 |
10
|
funcrcl3 |
|- ( f e. ( C Func D ) -> D e. Cat ) |
| 12 |
11
|
exlimiv |
|- ( E. f f e. ( C Func D ) -> D e. Cat ) |
| 13 |
7 12
|
syl |
|- ( ph -> D e. Cat ) |
| 14 |
10
|
funcrcl2 |
|- ( f e. ( C Func D ) -> C e. Cat ) |
| 15 |
14
|
exlimiv |
|- ( E. f f e. ( C Func D ) -> C e. Cat ) |
| 16 |
7 15
|
syl |
|- ( ph -> C e. Cat ) |
| 17 |
5 13 16 4 2 3
|
diag1f1 |
|- ( ph -> ( 1st ` ( D DiagFunc C ) ) : B -1-1-> ( C Func D ) ) |
| 18 |
|
ovex |
|- ( C Func D ) e. _V |
| 19 |
18
|
f1dom |
|- ( ( 1st ` ( D DiagFunc C ) ) : B -1-1-> ( C Func D ) -> B ~<_ ( C Func D ) ) |
| 20 |
17 19
|
syl |
|- ( ph -> B ~<_ ( C Func D ) ) |
| 21 |
|
euen1b |
|- ( ( C Func D ) ~~ 1o <-> E! f f e. ( C Func D ) ) |
| 22 |
1 21
|
sylibr |
|- ( ph -> ( C Func D ) ~~ 1o ) |
| 23 |
|
domentr |
|- ( ( B ~<_ ( C Func D ) /\ ( C Func D ) ~~ 1o ) -> B ~<_ 1o ) |
| 24 |
20 22 23
|
syl2anc |
|- ( ph -> B ~<_ 1o ) |