Metamath Proof Explorer


Theorem eufunclem

Description: If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses eufunc.f φ ∃! f f C Func D
eufunc.a A = Base C
eufunc.0 φ A
eufunc.b B = Base D
Assertion eufunclem φ B 1 𝑜

Proof

Step Hyp Ref Expression
1 eufunc.f φ ∃! f f C Func D
2 eufunc.a A = Base C
3 eufunc.0 φ A
4 eufunc.b B = Base D
5 eqid D Δ func C = D Δ func C
6 euex ∃! f f C Func D f f C Func D
7 1 6 syl φ f f C Func D
8 relfunc Rel C Func D
9 1st2ndbr Rel C Func D f C Func D 1 st f C Func D 2 nd f
10 8 9 mpan f C Func D 1 st f C Func D 2 nd f
11 10 funcrcl3 f C Func D D Cat
12 11 exlimiv f f C Func D D Cat
13 7 12 syl φ D Cat
14 10 funcrcl2 f C Func D C Cat
15 14 exlimiv f f C Func D C Cat
16 7 15 syl φ C Cat
17 5 13 16 4 2 3 diag1f1 φ 1 st D Δ func C : B 1-1 C Func D
18 ovex C Func D V
19 18 f1dom 1 st D Δ func C : B 1-1 C Func D B C Func D
20 17 19 syl φ B C Func D
21 euen1b C Func D 1 𝑜 ∃! f f C Func D
22 1 21 sylibr φ C Func D 1 𝑜
23 domentr B C Func D C Func D 1 𝑜 B 1 𝑜
24 20 22 23 syl2anc φ B 1 𝑜