| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eufunc.f |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 2 |
|
eufunc.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
eufunc.0 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 4 |
|
eufunc.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 5 |
|
eqid |
⊢ ( 𝐷 Δfunc 𝐶 ) = ( 𝐷 Δfunc 𝐶 ) |
| 6 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 8 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 9 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st ‘ 𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑓 ) ) |
| 10 |
8 9
|
mpan |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 1st ‘ 𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑓 ) ) |
| 11 |
10
|
funcrcl3 |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐷 ∈ Cat ) |
| 12 |
11
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐷 ∈ Cat ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 14 |
10
|
funcrcl2 |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐶 ∈ Cat ) |
| 15 |
14
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐶 ∈ Cat ) |
| 16 |
7 15
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 17 |
5 13 16 4 2 3
|
diag1f1 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐷 Δfunc 𝐶 ) ) : 𝐵 –1-1→ ( 𝐶 Func 𝐷 ) ) |
| 18 |
|
ovex |
⊢ ( 𝐶 Func 𝐷 ) ∈ V |
| 19 |
18
|
f1dom |
⊢ ( ( 1st ‘ ( 𝐷 Δfunc 𝐶 ) ) : 𝐵 –1-1→ ( 𝐶 Func 𝐷 ) → 𝐵 ≼ ( 𝐶 Func 𝐷 ) ) |
| 20 |
17 19
|
syl |
⊢ ( 𝜑 → 𝐵 ≼ ( 𝐶 Func 𝐷 ) ) |
| 21 |
|
euen1b |
⊢ ( ( 𝐶 Func 𝐷 ) ≈ 1o ↔ ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 22 |
1 21
|
sylibr |
⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) ≈ 1o ) |
| 23 |
|
domentr |
⊢ ( ( 𝐵 ≼ ( 𝐶 Func 𝐷 ) ∧ ( 𝐶 Func 𝐷 ) ≈ 1o ) → 𝐵 ≼ 1o ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ≼ 1o ) |