Metamath Proof Explorer


Theorem eufunclem

Description: If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses eufunc.f ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
eufunc.a 𝐴 = ( Base ‘ 𝐶 )
eufunc.0 ( 𝜑𝐴 ≠ ∅ )
eufunc.b 𝐵 = ( Base ‘ 𝐷 )
Assertion eufunclem ( 𝜑𝐵 ≼ 1o )

Proof

Step Hyp Ref Expression
1 eufunc.f ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
2 eufunc.a 𝐴 = ( Base ‘ 𝐶 )
3 eufunc.0 ( 𝜑𝐴 ≠ ∅ )
4 eufunc.b 𝐵 = ( Base ‘ 𝐷 )
5 eqid ( 𝐷 Δfunc 𝐶 ) = ( 𝐷 Δfunc 𝐶 )
6 euex ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
7 1 6 syl ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
8 relfunc Rel ( 𝐶 Func 𝐷 )
9 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑓 ) )
10 8 9 mpan ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 1st𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑓 ) )
11 10 funcrcl3 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐷 ∈ Cat )
12 11 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐷 ∈ Cat )
13 7 12 syl ( 𝜑𝐷 ∈ Cat )
14 10 funcrcl2 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐶 ∈ Cat )
15 14 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐶 ∈ Cat )
16 7 15 syl ( 𝜑𝐶 ∈ Cat )
17 5 13 16 4 2 3 diag1f1 ( 𝜑 → ( 1st ‘ ( 𝐷 Δfunc 𝐶 ) ) : 𝐵1-1→ ( 𝐶 Func 𝐷 ) )
18 ovex ( 𝐶 Func 𝐷 ) ∈ V
19 18 f1dom ( ( 1st ‘ ( 𝐷 Δfunc 𝐶 ) ) : 𝐵1-1→ ( 𝐶 Func 𝐷 ) → 𝐵 ≼ ( 𝐶 Func 𝐷 ) )
20 17 19 syl ( 𝜑𝐵 ≼ ( 𝐶 Func 𝐷 ) )
21 euen1b ( ( 𝐶 Func 𝐷 ) ≈ 1o ↔ ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
22 1 21 sylibr ( 𝜑 → ( 𝐶 Func 𝐷 ) ≈ 1o )
23 domentr ( ( 𝐵 ≼ ( 𝐶 Func 𝐷 ) ∧ ( 𝐶 Func 𝐷 ) ≈ 1o ) → 𝐵 ≼ 1o )
24 20 22 23 syl2anc ( 𝜑𝐵 ≼ 1o )