Metamath Proof Explorer


Theorem diag1f1

Description: The object part of the diagonal functor is 1-1 if B is non-empty. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses diag1f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
diag1f1.c ( 𝜑𝐶 ∈ Cat )
diag1f1.d ( 𝜑𝐷 ∈ Cat )
diag1f1.a 𝐴 = ( Base ‘ 𝐶 )
diag1f1.b 𝐵 = ( Base ‘ 𝐷 )
diag1f1.0 ( 𝜑𝐵 ≠ ∅ )
Assertion diag1f1 ( 𝜑 → ( 1st𝐿 ) : 𝐴1-1→ ( 𝐷 Func 𝐶 ) )

Proof

Step Hyp Ref Expression
1 diag1f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 diag1f1.c ( 𝜑𝐶 ∈ Cat )
3 diag1f1.d ( 𝜑𝐷 ∈ Cat )
4 diag1f1.a 𝐴 = ( Base ‘ 𝐶 )
5 diag1f1.b 𝐵 = ( Base ‘ 𝐷 )
6 diag1f1.0 ( 𝜑𝐵 ≠ ∅ )
7 eqid ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 )
8 7 fucbas ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) )
9 1 2 3 7 diagcl ( 𝜑𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
10 9 func1st2nd ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd𝐿 ) )
11 4 8 10 funcf1 ( 𝜑 → ( 1st𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) )
12 2 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝐶 ∈ Cat )
13 3 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝐷 ∈ Cat )
14 6 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝐵 ≠ ∅ )
15 simprl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝑥𝐴 )
16 simprr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝑦𝐴 )
17 eqid ( ( 1st𝐿 ) ‘ 𝑥 ) = ( ( 1st𝐿 ) ‘ 𝑥 )
18 eqid ( ( 1st𝐿 ) ‘ 𝑦 ) = ( ( 1st𝐿 ) ‘ 𝑦 )
19 1 12 13 4 5 14 15 16 17 18 diag1f1lem ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( ( 1st𝐿 ) ‘ 𝑥 ) = ( ( 1st𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) )
20 19 ralrimivva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( ( ( 1st𝐿 ) ‘ 𝑥 ) = ( ( 1st𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) )
21 dff13 ( ( 1st𝐿 ) : 𝐴1-1→ ( 𝐷 Func 𝐶 ) ↔ ( ( 1st𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( ( 1st𝐿 ) ‘ 𝑥 ) = ( ( 1st𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) )
22 11 20 21 sylanbrc ( 𝜑 → ( 1st𝐿 ) : 𝐴1-1→ ( 𝐷 Func 𝐶 ) )