| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1f1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diag1f1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
diag1f1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 4 |
|
diag1f1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 5 |
|
diag1f1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 6 |
|
diag1f1.0 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 7 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 8 |
7
|
fucbas |
⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 9 |
1 2 3 7
|
diagcl |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 10 |
9
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 11 |
4 8 10
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐶 ∈ Cat ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐷 ∈ Cat ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐵 ≠ ∅ ) |
| 15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 17 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) |
| 18 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) |
| 19 |
1 12 13 4 5 14 15 16 17 18
|
diag1f1lem |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 20 |
19
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 21 |
|
dff13 |
⊢ ( ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) ↔ ( ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 22 |
11 20 21
|
sylanbrc |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) ) |