Metamath Proof Explorer


Theorem diag1f1lem

Description: The object part of the diagonal functor is 1-1 if B is non-empty. Note that ( ph -> ( M = N <-> X = Y ) ) also holds because of diag1f1 and f1fveq . (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses diag1f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
diag1f1.c ( 𝜑𝐶 ∈ Cat )
diag1f1.d ( 𝜑𝐷 ∈ Cat )
diag1f1.a 𝐴 = ( Base ‘ 𝐶 )
diag1f1.b 𝐵 = ( Base ‘ 𝐷 )
diag1f1.0 ( 𝜑𝐵 ≠ ∅ )
diag1f1lem.x ( 𝜑𝑋𝐴 )
diag1f1lem.y ( 𝜑𝑌𝐴 )
diag1f1lem.m 𝑀 = ( ( 1st𝐿 ) ‘ 𝑋 )
diag1f1lem.n 𝑁 = ( ( 1st𝐿 ) ‘ 𝑌 )
Assertion diag1f1lem ( 𝜑 → ( 𝑀 = 𝑁𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 diag1f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 diag1f1.c ( 𝜑𝐶 ∈ Cat )
3 diag1f1.d ( 𝜑𝐷 ∈ Cat )
4 diag1f1.a 𝐴 = ( Base ‘ 𝐶 )
5 diag1f1.b 𝐵 = ( Base ‘ 𝐷 )
6 diag1f1.0 ( 𝜑𝐵 ≠ ∅ )
7 diag1f1lem.x ( 𝜑𝑋𝐴 )
8 diag1f1lem.y ( 𝜑𝑌𝐴 )
9 diag1f1lem.m 𝑀 = ( ( 1st𝐿 ) ‘ 𝑋 )
10 diag1f1lem.n 𝑁 = ( ( 1st𝐿 ) ‘ 𝑌 )
11 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
12 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
13 1 2 3 4 7 9 5 11 12 diag1a ( 𝜑𝑀 = ⟨ ( 𝐵 × { 𝑋 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ⟩ )
14 1 2 3 4 8 10 5 11 12 diag1a ( 𝜑𝑁 = ⟨ ( 𝐵 × { 𝑌 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) ⟩ )
15 13 14 eqeq12d ( 𝜑 → ( 𝑀 = 𝑁 ↔ ⟨ ( 𝐵 × { 𝑋 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ⟩ = ⟨ ( 𝐵 × { 𝑌 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) ⟩ ) )
16 5 fvexi 𝐵 ∈ V
17 snex { 𝑋 } ∈ V
18 16 17 xpex ( 𝐵 × { 𝑋 } ) ∈ V
19 16 16 mpoex ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ∈ V
20 18 19 opth1 ( ⟨ ( 𝐵 × { 𝑋 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ⟩ = ⟨ ( 𝐵 × { 𝑌 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) ⟩ → ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) )
21 xpcan ( 𝐵 ≠ ∅ → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ↔ { 𝑋 } = { 𝑌 } ) )
22 6 21 syl ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ↔ { 𝑋 } = { 𝑌 } ) )
23 sneqrg ( 𝑋𝐴 → ( { 𝑋 } = { 𝑌 } → 𝑋 = 𝑌 ) )
24 7 23 syl ( 𝜑 → ( { 𝑋 } = { 𝑌 } → 𝑋 = 𝑌 ) )
25 22 24 sylbid ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) → 𝑋 = 𝑌 ) )
26 20 25 syl5 ( 𝜑 → ( ⟨ ( 𝐵 × { 𝑋 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ⟩ = ⟨ ( 𝐵 × { 𝑌 } ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) ⟩ → 𝑋 = 𝑌 ) )
27 15 26 sylbid ( 𝜑 → ( 𝑀 = 𝑁𝑋 = 𝑌 ) )