| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1f1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diag1f1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
diag1f1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 4 |
|
diag1f1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 5 |
|
diag1f1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 6 |
|
diag1f1.0 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 7 |
|
diag1f1lem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
diag1f1lem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 9 |
|
diag1f1lem.m |
⊢ 𝑀 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 10 |
|
diag1f1lem.n |
⊢ 𝑁 = ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) |
| 11 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 12 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 13 |
1 2 3 4 7 9 5 11 12
|
diag1a |
⊢ ( 𝜑 → 𝑀 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 14 |
1 2 3 4 8 10 5 11 12
|
diag1a |
⊢ ( 𝜑 → 𝑁 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝜑 → ( 𝑀 = 𝑁 ↔ 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 ) ) |
| 16 |
5
|
fvexi |
⊢ 𝐵 ∈ V |
| 17 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 18 |
16 17
|
xpex |
⊢ ( 𝐵 × { 𝑋 } ) ∈ V |
| 19 |
16 16
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ∈ V |
| 20 |
18 19
|
opth1 |
⊢ ( 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 → ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ) |
| 21 |
|
xpcan |
⊢ ( 𝐵 ≠ ∅ → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ↔ { 𝑋 } = { 𝑌 } ) ) |
| 22 |
6 21
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ↔ { 𝑋 } = { 𝑌 } ) ) |
| 23 |
|
sneqrg |
⊢ ( 𝑋 ∈ 𝐴 → ( { 𝑋 } = { 𝑌 } → 𝑋 = 𝑌 ) ) |
| 24 |
7 23
|
syl |
⊢ ( 𝜑 → ( { 𝑋 } = { 𝑌 } → 𝑋 = 𝑌 ) ) |
| 25 |
22 24
|
sylbid |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) → 𝑋 = 𝑌 ) ) |
| 26 |
20 25
|
syl5 |
⊢ ( 𝜑 → ( 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 → 𝑋 = 𝑌 ) ) |
| 27 |
15 26
|
sylbid |
⊢ ( 𝜑 → ( 𝑀 = 𝑁 → 𝑋 = 𝑌 ) ) |