| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xp11 | ⊢ ( ( 𝐶  ≠  ∅  ∧  𝐴  ≠  ∅ )  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  ↔  ( 𝐶  =  𝐶  ∧  𝐴  =  𝐵 ) ) ) | 
						
							| 2 |  | eqid | ⊢ 𝐶  =  𝐶 | 
						
							| 3 | 2 | biantrur | ⊢ ( 𝐴  =  𝐵  ↔  ( 𝐶  =  𝐶  ∧  𝐴  =  𝐵 ) ) | 
						
							| 4 | 1 3 | bitr4di | ⊢ ( ( 𝐶  ≠  ∅  ∧  𝐴  ≠  ∅ )  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 5 |  | nne | ⊢ ( ¬  𝐴  ≠  ∅  ↔  𝐴  =  ∅ ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐶  ≠  ∅  ∧  𝐴  =  ∅ )  →  𝐴  =  ∅ ) | 
						
							| 7 |  | xpeq2 | ⊢ ( 𝐴  =  ∅  →  ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  ∅ ) ) | 
						
							| 8 |  | xp0 | ⊢ ( 𝐶  ×  ∅ )  =  ∅ | 
						
							| 9 | 7 8 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( 𝐶  ×  𝐴 )  =  ∅ ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  ↔  ∅  =  ( 𝐶  ×  𝐵 ) ) ) | 
						
							| 11 |  | eqcom | ⊢ ( ∅  =  ( 𝐶  ×  𝐵 )  ↔  ( 𝐶  ×  𝐵 )  =  ∅ ) | 
						
							| 12 | 10 11 | bitrdi | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  ↔  ( 𝐶  ×  𝐵 )  =  ∅ ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐶  ≠  ∅  ∧  𝐴  =  ∅ )  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  ↔  ( 𝐶  ×  𝐵 )  =  ∅ ) ) | 
						
							| 14 |  | df-ne | ⊢ ( 𝐶  ≠  ∅  ↔  ¬  𝐶  =  ∅ ) | 
						
							| 15 |  | xpeq0 | ⊢ ( ( 𝐶  ×  𝐵 )  =  ∅  ↔  ( 𝐶  =  ∅  ∨  𝐵  =  ∅ ) ) | 
						
							| 16 |  | orel1 | ⊢ ( ¬  𝐶  =  ∅  →  ( ( 𝐶  =  ∅  ∨  𝐵  =  ∅ )  →  𝐵  =  ∅ ) ) | 
						
							| 17 | 15 16 | biimtrid | ⊢ ( ¬  𝐶  =  ∅  →  ( ( 𝐶  ×  𝐵 )  =  ∅  →  𝐵  =  ∅ ) ) | 
						
							| 18 | 14 17 | sylbi | ⊢ ( 𝐶  ≠  ∅  →  ( ( 𝐶  ×  𝐵 )  =  ∅  →  𝐵  =  ∅ ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐶  ≠  ∅  ∧  𝐴  =  ∅ )  →  ( ( 𝐶  ×  𝐵 )  =  ∅  →  𝐵  =  ∅ ) ) | 
						
							| 20 | 13 19 | sylbid | ⊢ ( ( 𝐶  ≠  ∅  ∧  𝐴  =  ∅ )  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  →  𝐵  =  ∅ ) ) | 
						
							| 21 |  | eqtr3 | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  →  𝐴  =  𝐵 ) | 
						
							| 22 | 6 20 21 | syl6an | ⊢ ( ( 𝐶  ≠  ∅  ∧  𝐴  =  ∅ )  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 23 | 5 22 | sylan2b | ⊢ ( ( 𝐶  ≠  ∅  ∧  ¬  𝐴  ≠  ∅ )  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 24 |  | xpeq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 ) ) | 
						
							| 25 | 23 24 | impbid1 | ⊢ ( ( 𝐶  ≠  ∅  ∧  ¬  𝐴  ≠  ∅ )  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 26 | 4 25 | pm2.61dan | ⊢ ( 𝐶  ≠  ∅  →  ( ( 𝐶  ×  𝐴 )  =  ( 𝐶  ×  𝐵 )  ↔  𝐴  =  𝐵 ) ) |