| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xp11 |  |-  ( ( C =/= (/) /\ A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) <-> ( C = C /\ A = B ) ) ) | 
						
							| 2 |  | eqid |  |-  C = C | 
						
							| 3 | 2 | biantrur |  |-  ( A = B <-> ( C = C /\ A = B ) ) | 
						
							| 4 | 1 3 | bitr4di |  |-  ( ( C =/= (/) /\ A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) <-> A = B ) ) | 
						
							| 5 |  | nne |  |-  ( -. A =/= (/) <-> A = (/) ) | 
						
							| 6 |  | simpr |  |-  ( ( C =/= (/) /\ A = (/) ) -> A = (/) ) | 
						
							| 7 |  | xpeq2 |  |-  ( A = (/) -> ( C X. A ) = ( C X. (/) ) ) | 
						
							| 8 |  | xp0 |  |-  ( C X. (/) ) = (/) | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( A = (/) -> ( C X. A ) = (/) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( A = (/) -> ( ( C X. A ) = ( C X. B ) <-> (/) = ( C X. B ) ) ) | 
						
							| 11 |  | eqcom |  |-  ( (/) = ( C X. B ) <-> ( C X. B ) = (/) ) | 
						
							| 12 | 10 11 | bitrdi |  |-  ( A = (/) -> ( ( C X. A ) = ( C X. B ) <-> ( C X. B ) = (/) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. A ) = ( C X. B ) <-> ( C X. B ) = (/) ) ) | 
						
							| 14 |  | df-ne |  |-  ( C =/= (/) <-> -. C = (/) ) | 
						
							| 15 |  | xpeq0 |  |-  ( ( C X. B ) = (/) <-> ( C = (/) \/ B = (/) ) ) | 
						
							| 16 |  | orel1 |  |-  ( -. C = (/) -> ( ( C = (/) \/ B = (/) ) -> B = (/) ) ) | 
						
							| 17 | 15 16 | biimtrid |  |-  ( -. C = (/) -> ( ( C X. B ) = (/) -> B = (/) ) ) | 
						
							| 18 | 14 17 | sylbi |  |-  ( C =/= (/) -> ( ( C X. B ) = (/) -> B = (/) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. B ) = (/) -> B = (/) ) ) | 
						
							| 20 | 13 19 | sylbid |  |-  ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. A ) = ( C X. B ) -> B = (/) ) ) | 
						
							| 21 |  | eqtr3 |  |-  ( ( A = (/) /\ B = (/) ) -> A = B ) | 
						
							| 22 | 6 20 21 | syl6an |  |-  ( ( C =/= (/) /\ A = (/) ) -> ( ( C X. A ) = ( C X. B ) -> A = B ) ) | 
						
							| 23 | 5 22 | sylan2b |  |-  ( ( C =/= (/) /\ -. A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) -> A = B ) ) | 
						
							| 24 |  | xpeq2 |  |-  ( A = B -> ( C X. A ) = ( C X. B ) ) | 
						
							| 25 | 23 24 | impbid1 |  |-  ( ( C =/= (/) /\ -. A =/= (/) ) -> ( ( C X. A ) = ( C X. B ) <-> A = B ) ) | 
						
							| 26 | 4 25 | pm2.61dan |  |-  ( C =/= (/) -> ( ( C X. A ) = ( C X. B ) <-> A = B ) ) |