| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag1f1.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diag1f1.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
diag1f1.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
diag1f1.a |
|- A = ( Base ` C ) |
| 5 |
|
diag1f1.b |
|- B = ( Base ` D ) |
| 6 |
|
diag1f1.0 |
|- ( ph -> B =/= (/) ) |
| 7 |
|
diag1f1lem.x |
|- ( ph -> X e. A ) |
| 8 |
|
diag1f1lem.y |
|- ( ph -> Y e. A ) |
| 9 |
|
diag1f1lem.m |
|- M = ( ( 1st ` L ) ` X ) |
| 10 |
|
diag1f1lem.n |
|- N = ( ( 1st ` L ) ` Y ) |
| 11 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 12 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 13 |
1 2 3 4 7 9 5 11 12
|
diag1a |
|- ( ph -> M = <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 14 |
1 2 3 4 8 10 5 11 12
|
diag1a |
|- ( ph -> N = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. ) |
| 15 |
13 14
|
eqeq12d |
|- ( ph -> ( M = N <-> <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. ) ) |
| 16 |
5
|
fvexi |
|- B e. _V |
| 17 |
|
snex |
|- { X } e. _V |
| 18 |
16 17
|
xpex |
|- ( B X. { X } ) e. _V |
| 19 |
16 16
|
mpoex |
|- ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) e. _V |
| 20 |
18 19
|
opth1 |
|- ( <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. -> ( B X. { X } ) = ( B X. { Y } ) ) |
| 21 |
|
xpcan |
|- ( B =/= (/) -> ( ( B X. { X } ) = ( B X. { Y } ) <-> { X } = { Y } ) ) |
| 22 |
6 21
|
syl |
|- ( ph -> ( ( B X. { X } ) = ( B X. { Y } ) <-> { X } = { Y } ) ) |
| 23 |
|
sneqrg |
|- ( X e. A -> ( { X } = { Y } -> X = Y ) ) |
| 24 |
7 23
|
syl |
|- ( ph -> ( { X } = { Y } -> X = Y ) ) |
| 25 |
22 24
|
sylbid |
|- ( ph -> ( ( B X. { X } ) = ( B X. { Y } ) -> X = Y ) ) |
| 26 |
20 25
|
syl5 |
|- ( ph -> ( <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. -> X = Y ) ) |
| 27 |
15 26
|
sylbid |
|- ( ph -> ( M = N -> X = Y ) ) |