Metamath Proof Explorer


Theorem diag1f1

Description: The object part of the diagonal functor is 1-1 if B is non-empty. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses diag1f1.l L = C Δ func D
diag1f1.c φ C Cat
diag1f1.d φ D Cat
diag1f1.a A = Base C
diag1f1.b B = Base D
diag1f1.0 φ B
Assertion diag1f1 φ 1 st L : A 1-1 D Func C

Proof

Step Hyp Ref Expression
1 diag1f1.l L = C Δ func D
2 diag1f1.c φ C Cat
3 diag1f1.d φ D Cat
4 diag1f1.a A = Base C
5 diag1f1.b B = Base D
6 diag1f1.0 φ B
7 eqid D FuncCat C = D FuncCat C
8 7 fucbas D Func C = Base D FuncCat C
9 1 2 3 7 diagcl φ L C Func D FuncCat C
10 9 func1st2nd φ 1 st L C Func D FuncCat C 2 nd L
11 4 8 10 funcf1 φ 1 st L : A D Func C
12 2 adantr φ x A y A C Cat
13 3 adantr φ x A y A D Cat
14 6 adantr φ x A y A B
15 simprl φ x A y A x A
16 simprr φ x A y A y A
17 eqid 1 st L x = 1 st L x
18 eqid 1 st L y = 1 st L y
19 1 12 13 4 5 14 15 16 17 18 diag1f1lem φ x A y A 1 st L x = 1 st L y x = y
20 19 ralrimivva φ x A y A 1 st L x = 1 st L y x = y
21 dff13 1 st L : A 1-1 D Func C 1 st L : A D Func C x A y A 1 st L x = 1 st L y x = y
22 11 20 21 sylanbrc φ 1 st L : A 1-1 D Func C