Metamath Proof Explorer


Theorem diag2f1lem

Description: Lemma for diag2f1 . The converse is trivial ( fveq2 ). (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diag2f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
diag2f1.a 𝐴 = ( Base ‘ 𝐶 )
diag2f1.b 𝐵 = ( Base ‘ 𝐷 )
diag2f1.h 𝐻 = ( Hom ‘ 𝐶 )
diag2f1.c ( 𝜑𝐶 ∈ Cat )
diag2f1.d ( 𝜑𝐷 ∈ Cat )
diag2f1.x ( 𝜑𝑋𝐴 )
diag2f1.y ( 𝜑𝑌𝐴 )
diag2f1.0 ( 𝜑𝐵 ≠ ∅ )
diag2f1lem.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
diag2f1lem.g ( 𝜑𝐺 ∈ ( 𝑋 𝐻 𝑌 ) )
Assertion diag2f1lem ( 𝜑 → ( ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐺 ) → 𝐹 = 𝐺 ) )

Proof

Step Hyp Ref Expression
1 diag2f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 diag2f1.a 𝐴 = ( Base ‘ 𝐶 )
3 diag2f1.b 𝐵 = ( Base ‘ 𝐷 )
4 diag2f1.h 𝐻 = ( Hom ‘ 𝐶 )
5 diag2f1.c ( 𝜑𝐶 ∈ Cat )
6 diag2f1.d ( 𝜑𝐷 ∈ Cat )
7 diag2f1.x ( 𝜑𝑋𝐴 )
8 diag2f1.y ( 𝜑𝑌𝐴 )
9 diag2f1.0 ( 𝜑𝐵 ≠ ∅ )
10 diag2f1lem.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
11 diag2f1lem.g ( 𝜑𝐺 ∈ ( 𝑋 𝐻 𝑌 ) )
12 1 2 3 4 5 6 7 8 10 diag2 ( 𝜑 → ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) )
13 1 2 3 4 5 6 7 8 11 diag2 ( 𝜑 → ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐺 ) = ( 𝐵 × { 𝐺 } ) )
14 12 13 eqeq12d ( 𝜑 → ( ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐺 ) ↔ ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ) )
15 xpcan ( 𝐵 ≠ ∅ → ( ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ↔ { 𝐹 } = { 𝐺 } ) )
16 9 15 syl ( 𝜑 → ( ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ↔ { 𝐹 } = { 𝐺 } ) )
17 14 16 bitrd ( 𝜑 → ( ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐺 ) ↔ { 𝐹 } = { 𝐺 } ) )
18 sneqrg ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( { 𝐹 } = { 𝐺 } → 𝐹 = 𝐺 ) )
19 10 18 syl ( 𝜑 → ( { 𝐹 } = { 𝐺 } → 𝐹 = 𝐺 ) )
20 17 19 sylbid ( 𝜑 → ( ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝐺 ) → 𝐹 = 𝐺 ) )