| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag2f1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diag2f1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
diag2f1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 4 |
|
diag2f1.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 5 |
|
diag2f1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
diag2f1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 7 |
|
diag2f1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
diag2f1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 9 |
|
diag2f1.0 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 10 |
|
diag2f1lem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 11 |
|
diag2f1lem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 12 |
1 2 3 4 5 6 7 8 10
|
diag2 |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |
| 13 |
1 2 3 4 5 6 7 8 11
|
diag2 |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) = ( 𝐵 × { 𝐺 } ) ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) ↔ ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ) ) |
| 15 |
|
xpcan |
⊢ ( 𝐵 ≠ ∅ → ( ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ↔ { 𝐹 } = { 𝐺 } ) ) |
| 16 |
9 15
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ↔ { 𝐹 } = { 𝐺 } ) ) |
| 17 |
14 16
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) ↔ { 𝐹 } = { 𝐺 } ) ) |
| 18 |
|
sneqrg |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( { 𝐹 } = { 𝐺 } → 𝐹 = 𝐺 ) ) |
| 19 |
10 18
|
syl |
⊢ ( 𝜑 → ( { 𝐹 } = { 𝐺 } → 𝐹 = 𝐺 ) ) |
| 20 |
17 19
|
sylbid |
⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) → 𝐹 = 𝐺 ) ) |