Metamath Proof Explorer


Theorem diag2f1

Description: If B is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diag2f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
diag2f1.a 𝐴 = ( Base ‘ 𝐶 )
diag2f1.b 𝐵 = ( Base ‘ 𝐷 )
diag2f1.h 𝐻 = ( Hom ‘ 𝐶 )
diag2f1.c ( 𝜑𝐶 ∈ Cat )
diag2f1.d ( 𝜑𝐷 ∈ Cat )
diag2f1.x ( 𝜑𝑋𝐴 )
diag2f1.y ( 𝜑𝑌𝐴 )
diag2f1.0 ( 𝜑𝐵 ≠ ∅ )
diag2f1.n 𝑁 = ( 𝐷 Nat 𝐶 )
Assertion diag2f1 ( 𝜑 → ( 𝑋 ( 2nd𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 diag2f1.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 diag2f1.a 𝐴 = ( Base ‘ 𝐶 )
3 diag2f1.b 𝐵 = ( Base ‘ 𝐷 )
4 diag2f1.h 𝐻 = ( Hom ‘ 𝐶 )
5 diag2f1.c ( 𝜑𝐶 ∈ Cat )
6 diag2f1.d ( 𝜑𝐷 ∈ Cat )
7 diag2f1.x ( 𝜑𝑋𝐴 )
8 diag2f1.y ( 𝜑𝑌𝐴 )
9 diag2f1.0 ( 𝜑𝐵 ≠ ∅ )
10 diag2f1.n 𝑁 = ( 𝐷 Nat 𝐶 )
11 eqid ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 )
12 11 10 fuchom 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) )
13 1 5 6 11 diagcl ( 𝜑𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
14 13 func1st2nd ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd𝐿 ) )
15 2 4 12 14 7 8 funcf2 ( 𝜑 → ( 𝑋 ( 2nd𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) )
16 5 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐶 ∈ Cat )
17 6 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐷 ∈ Cat )
18 7 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑋𝐴 )
19 8 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑌𝐴 )
20 9 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐵 ≠ ∅ )
21 simprl ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )
22 simprr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) )
23 1 2 3 4 16 17 18 19 20 21 22 diag2f1lem ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → ( ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) )
24 23 ralrimivva ( 𝜑 → ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ( ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) )
25 dff13 ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) ↔ ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ( ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) )
26 15 24 25 sylanbrc ( 𝜑 → ( 𝑋 ( 2nd𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐿 ) ‘ 𝑌 ) ) )