| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag2f1.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
diag2f1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
diag2f1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 4 |
|
diag2f1.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 5 |
|
diag2f1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
diag2f1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 7 |
|
diag2f1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
diag2f1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 9 |
|
diag2f1.0 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 10 |
|
diag2f1.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) |
| 11 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 12 |
11 10
|
fuchom |
⊢ 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 13 |
1 5 6 11
|
diagcl |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 14 |
13
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 15 |
2 4 12 14 7 8
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
| 16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐶 ∈ Cat ) |
| 17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐷 ∈ Cat ) |
| 18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑋 ∈ 𝐴 ) |
| 19 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑌 ∈ 𝐴 ) |
| 20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐵 ≠ ∅ ) |
| 21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 22 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 23 |
1 2 3 4 16 17 18 19 20 21 22
|
diag2f1lem |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 24 |
23
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 25 |
|
dff13 |
⊢ ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ↔ ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) ) |
| 26 |
15 24 25
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |