| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag2f1.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diag2f1.a |
|- A = ( Base ` C ) |
| 3 |
|
diag2f1.b |
|- B = ( Base ` D ) |
| 4 |
|
diag2f1.h |
|- H = ( Hom ` C ) |
| 5 |
|
diag2f1.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
diag2f1.d |
|- ( ph -> D e. Cat ) |
| 7 |
|
diag2f1.x |
|- ( ph -> X e. A ) |
| 8 |
|
diag2f1.y |
|- ( ph -> Y e. A ) |
| 9 |
|
diag2f1.0 |
|- ( ph -> B =/= (/) ) |
| 10 |
|
diag2f1.n |
|- N = ( D Nat C ) |
| 11 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
| 12 |
11 10
|
fuchom |
|- N = ( Hom ` ( D FuncCat C ) ) |
| 13 |
1 5 6 11
|
diagcl |
|- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 14 |
13
|
func1st2nd |
|- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 15 |
2 4 12 14 7 8
|
funcf2 |
|- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 16 |
5
|
adantr |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> C e. Cat ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> D e. Cat ) |
| 18 |
7
|
adantr |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> X e. A ) |
| 19 |
8
|
adantr |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> Y e. A ) |
| 20 |
9
|
adantr |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> B =/= (/) ) |
| 21 |
|
simprl |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> f e. ( X H Y ) ) |
| 22 |
|
simprr |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> g e. ( X H Y ) ) |
| 23 |
1 2 3 4 16 17 18 19 20 21 22
|
diag2f1lem |
|- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> ( ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` g ) -> f = g ) ) |
| 24 |
23
|
ralrimivva |
|- ( ph -> A. f e. ( X H Y ) A. g e. ( X H Y ) ( ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` g ) -> f = g ) ) |
| 25 |
|
dff13 |
|- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) <-> ( ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) /\ A. f e. ( X H Y ) A. g e. ( X H Y ) ( ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` g ) -> f = g ) ) ) |
| 26 |
15 24 25
|
sylanbrc |
|- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |