| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diag2f1.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
diag2f1.a |
|- A = ( Base ` C ) |
| 3 |
|
diag2f1.b |
|- B = ( Base ` D ) |
| 4 |
|
diag2f1.h |
|- H = ( Hom ` C ) |
| 5 |
|
diag2f1.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
diag2f1.d |
|- ( ph -> D e. Cat ) |
| 7 |
|
diag2f1.x |
|- ( ph -> X e. A ) |
| 8 |
|
diag2f1.y |
|- ( ph -> Y e. A ) |
| 9 |
|
diag2f1.0 |
|- ( ph -> B =/= (/) ) |
| 10 |
|
diag2f1lem.f |
|- ( ph -> F e. ( X H Y ) ) |
| 11 |
|
diag2f1lem.g |
|- ( ph -> G e. ( X H Y ) ) |
| 12 |
1 2 3 4 5 6 7 8 10
|
diag2 |
|- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |
| 13 |
1 2 3 4 5 6 7 8 11
|
diag2 |
|- ( ph -> ( ( X ( 2nd ` L ) Y ) ` G ) = ( B X. { G } ) ) |
| 14 |
12 13
|
eqeq12d |
|- ( ph -> ( ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` L ) Y ) ` G ) <-> ( B X. { F } ) = ( B X. { G } ) ) ) |
| 15 |
|
xpcan |
|- ( B =/= (/) -> ( ( B X. { F } ) = ( B X. { G } ) <-> { F } = { G } ) ) |
| 16 |
9 15
|
syl |
|- ( ph -> ( ( B X. { F } ) = ( B X. { G } ) <-> { F } = { G } ) ) |
| 17 |
14 16
|
bitrd |
|- ( ph -> ( ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` L ) Y ) ` G ) <-> { F } = { G } ) ) |
| 18 |
|
sneqrg |
|- ( F e. ( X H Y ) -> ( { F } = { G } -> F = G ) ) |
| 19 |
10 18
|
syl |
|- ( ph -> ( { F } = { G } -> F = G ) ) |
| 20 |
17 19
|
sylbid |
|- ( ph -> ( ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` L ) Y ) ` G ) -> F = G ) ) |