| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eufunc.f |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 2 |
|
eufunc.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
eufunc.0 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 4 |
|
eufunc.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 5 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 7 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐵 = ∅ ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 8 |
2 4 6 7
|
func0g2 |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐵 = ∅ ) → 𝐴 = ∅ ) |
| 9 |
8
|
ex |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 10 |
9
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 11 |
1 5 10
|
3syl |
⊢ ( 𝜑 → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 12 |
11
|
imp |
⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐴 = ∅ ) |
| 13 |
3 12
|
mteqand |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 14 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐵 ) |
| 16 |
1 2 3 4
|
eufunclem |
⊢ ( 𝜑 → 𝐵 ≼ 1o ) |
| 17 |
|
modom2 |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ 𝐵 ≼ 1o ) |
| 18 |
16 17
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 19 |
|
df-eu |
⊢ ( ∃! 𝑥 𝑥 ∈ 𝐵 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐵 ∧ ∃* 𝑥 𝑥 ∈ 𝐵 ) ) |
| 20 |
15 18 19
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ 𝐵 ) |