Metamath Proof Explorer


Theorem eufunc

Description: If there exists a unique functor from a non-empty category, then the base of the target category is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses eufunc.f φ ∃! f f C Func D
eufunc.a A = Base C
eufunc.0 φ A
eufunc.b B = Base D
Assertion eufunc φ ∃! x x B

Proof

Step Hyp Ref Expression
1 eufunc.f φ ∃! f f C Func D
2 eufunc.a A = Base C
3 eufunc.0 φ A
4 eufunc.b B = Base D
5 euex ∃! f f C Func D f f C Func D
6 simpr f C Func D B = B =
7 simpl f C Func D B = f C Func D
8 2 4 6 7 func0g2 f C Func D B = A =
9 8 ex f C Func D B = A =
10 9 exlimiv f f C Func D B = A =
11 1 5 10 3syl φ B = A =
12 11 imp φ B = A =
13 3 12 mteqand φ B
14 n0 B x x B
15 13 14 sylib φ x x B
16 1 2 3 4 eufunclem φ B 1 𝑜
17 modom2 * x x B B 1 𝑜
18 16 17 sylibr φ * x x B
19 df-eu ∃! x x B x x B * x x B
20 15 18 19 sylanbrc φ ∃! x x B