Metamath Proof Explorer


Theorem mteqand

Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023)

Ref Expression
Hypotheses mteqand.1 φCD
mteqand.2 φA=BC=D
Assertion mteqand φAB

Proof

Step Hyp Ref Expression
1 mteqand.1 φCD
2 mteqand.2 φA=BC=D
3 1 neneqd φ¬C=D
4 3 2 mtand φ¬A=B
5 4 neqned φAB