| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcterm.e |
|- E = ( CatCat ` U ) |
| 2 |
|
termcterm2. |
|- ( ph -> ( U i^i TermCat ) =/= (/) ) |
| 3 |
|
termcterm2.t |
|- ( ph -> C e. ( TermO ` E ) ) |
| 4 |
|
n0 |
|- ( ( U i^i TermCat ) =/= (/) <-> E. d d e. ( U i^i TermCat ) ) |
| 5 |
2 4
|
sylib |
|- ( ph -> E. d d e. ( U i^i TermCat ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( U i^i TermCat ) ) |
| 7 |
6
|
elin2d |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. TermCat ) |
| 8 |
7
|
termcthind |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ThinCat ) |
| 9 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. ( TermO ` E ) ) |
| 11 |
9
|
termoo2 |
|- ( C e. ( TermO ` E ) -> C e. ( Base ` E ) ) |
| 12 |
10 11
|
syl |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. ( Base ` E ) ) |
| 13 |
1 9
|
elbasfv |
|- ( C e. ( Base ` E ) -> U e. _V ) |
| 14 |
12 13
|
syl |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> U e. _V ) |
| 15 |
6
|
elin1d |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. U ) |
| 16 |
7
|
termccd |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. Cat ) |
| 17 |
15 16
|
elind |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( U i^i Cat ) ) |
| 18 |
1 9 14
|
catcbas |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` E ) = ( U i^i Cat ) ) |
| 19 |
17 18
|
eleqtrrd |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( Base ` E ) ) |
| 20 |
|
termorcl |
|- ( C e. ( TermO ` E ) -> E e. Cat ) |
| 21 |
10 20
|
syl |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> E e. Cat ) |
| 22 |
1 14 15 7
|
termcterm |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> d e. ( TermO ` E ) ) |
| 23 |
21 10 22
|
termoeu1w |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C ( ~=c ` E ) d ) |
| 24 |
1 9 14 12 19 23
|
thincciso4 |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( C e. ThinCat <-> d e. ThinCat ) ) |
| 25 |
8 24
|
mpbird |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. ThinCat ) |
| 26 |
21 10 22
|
termoeu1 |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> E! f f e. ( C ( Iso ` E ) d ) ) |
| 27 |
|
euex |
|- ( E! f f e. ( C ( Iso ` E ) d ) -> E. f f e. ( C ( Iso ` E ) d ) ) |
| 28 |
26 27
|
syl |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> E. f f e. ( C ( Iso ` E ) d ) ) |
| 29 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 30 |
|
eqid |
|- ( Base ` d ) = ( Base ` d ) |
| 31 |
|
eqid |
|- ( Iso ` E ) = ( Iso ` E ) |
| 32 |
1 9 29 30 14 12 19 31
|
catciso |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( f e. ( C ( Iso ` E ) d ) <-> ( f e. ( ( C Full d ) i^i ( C Faith d ) ) /\ ( 1st ` f ) : ( Base ` C ) -1-1-onto-> ( Base ` d ) ) ) ) |
| 33 |
32
|
simplbda |
|- ( ( ( ph /\ d e. ( U i^i TermCat ) ) /\ f e. ( C ( Iso ` E ) d ) ) -> ( 1st ` f ) : ( Base ` C ) -1-1-onto-> ( Base ` d ) ) |
| 34 |
|
fvex |
|- ( Base ` C ) e. _V |
| 35 |
34
|
f1oen |
|- ( ( 1st ` f ) : ( Base ` C ) -1-1-onto-> ( Base ` d ) -> ( Base ` C ) ~~ ( Base ` d ) ) |
| 36 |
33 35
|
syl |
|- ( ( ( ph /\ d e. ( U i^i TermCat ) ) /\ f e. ( C ( Iso ` E ) d ) ) -> ( Base ` C ) ~~ ( Base ` d ) ) |
| 37 |
28 36
|
exlimddv |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` C ) ~~ ( Base ` d ) ) |
| 38 |
30
|
istermc3 |
|- ( d e. TermCat <-> ( d e. ThinCat /\ ( Base ` d ) ~~ 1o ) ) |
| 39 |
7 38
|
sylib |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( d e. ThinCat /\ ( Base ` d ) ~~ 1o ) ) |
| 40 |
39
|
simprd |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` d ) ~~ 1o ) |
| 41 |
|
entr |
|- ( ( ( Base ` C ) ~~ ( Base ` d ) /\ ( Base ` d ) ~~ 1o ) -> ( Base ` C ) ~~ 1o ) |
| 42 |
37 40 41
|
syl2anc |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> ( Base ` C ) ~~ 1o ) |
| 43 |
29
|
istermc3 |
|- ( C e. TermCat <-> ( C e. ThinCat /\ ( Base ` C ) ~~ 1o ) ) |
| 44 |
25 42 43
|
sylanbrc |
|- ( ( ph /\ d e. ( U i^i TermCat ) ) -> C e. TermCat ) |
| 45 |
5 44
|
exlimddv |
|- ( ph -> C e. TermCat ) |