| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcterm.e |
|- E = ( CatCat ` U ) |
| 2 |
|
termcterm.u |
|- ( ph -> U e. V ) |
| 3 |
|
termcterm.c |
|- ( ph -> C e. U ) |
| 4 |
|
termcterm.t |
|- ( ph -> C e. TermCat ) |
| 5 |
|
simpr |
|- ( ( ph /\ d e. ( Base ` E ) ) -> d e. ( Base ` E ) ) |
| 6 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 7 |
1 6 2
|
catcbas |
|- ( ph -> ( Base ` E ) = ( U i^i Cat ) ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ d e. ( Base ` E ) ) -> ( Base ` E ) = ( U i^i Cat ) ) |
| 9 |
5 8
|
eleqtrd |
|- ( ( ph /\ d e. ( Base ` E ) ) -> d e. ( U i^i Cat ) ) |
| 10 |
9
|
elin2d |
|- ( ( ph /\ d e. ( Base ` E ) ) -> d e. Cat ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ d e. ( Base ` E ) ) -> C e. TermCat ) |
| 12 |
10 11
|
functermceu |
|- ( ( ph /\ d e. ( Base ` E ) ) -> E! f f e. ( d Func C ) ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ d e. ( Base ` E ) ) -> U e. V ) |
| 14 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 15 |
4
|
termccd |
|- ( ph -> C e. Cat ) |
| 16 |
3 15
|
elind |
|- ( ph -> C e. ( U i^i Cat ) ) |
| 17 |
16 7
|
eleqtrrd |
|- ( ph -> C e. ( Base ` E ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ d e. ( Base ` E ) ) -> C e. ( Base ` E ) ) |
| 19 |
1 6 13 14 5 18
|
catchom |
|- ( ( ph /\ d e. ( Base ` E ) ) -> ( d ( Hom ` E ) C ) = ( d Func C ) ) |
| 20 |
19
|
eleq2d |
|- ( ( ph /\ d e. ( Base ` E ) ) -> ( f e. ( d ( Hom ` E ) C ) <-> f e. ( d Func C ) ) ) |
| 21 |
20
|
eubidv |
|- ( ( ph /\ d e. ( Base ` E ) ) -> ( E! f f e. ( d ( Hom ` E ) C ) <-> E! f f e. ( d Func C ) ) ) |
| 22 |
12 21
|
mpbird |
|- ( ( ph /\ d e. ( Base ` E ) ) -> E! f f e. ( d ( Hom ` E ) C ) ) |
| 23 |
22
|
ralrimiva |
|- ( ph -> A. d e. ( Base ` E ) E! f f e. ( d ( Hom ` E ) C ) ) |
| 24 |
1
|
catccat |
|- ( U e. V -> E e. Cat ) |
| 25 |
2 24
|
syl |
|- ( ph -> E e. Cat ) |
| 26 |
6 14 25 17
|
istermo |
|- ( ph -> ( C e. ( TermO ` E ) <-> A. d e. ( Base ` E ) E! f f e. ( d ( Hom ` E ) C ) ) ) |
| 27 |
23 26
|
mpbird |
|- ( ph -> C e. ( TermO ` E ) ) |