| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functermceu.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
functermceu.d |
|- ( ph -> D e. TermCat ) |
| 3 |
|
opex |
|- <. ( ( Base ` C ) X. ( Base ` D ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) >. e. _V |
| 4 |
3
|
a1i |
|- ( ph -> <. ( ( Base ` C ) X. ( Base ` D ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) >. e. _V ) |
| 5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 6 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 7 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 8 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 9 |
|
eqid |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( ( Base ` C ) X. ( Base ` D ) ) |
| 10 |
|
eqid |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) |
| 11 |
1 2 5 6 7 8 9 10
|
functermc2 |
|- ( ph -> ( C Func D ) = { <. ( ( Base ` C ) X. ( Base ` D ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) >. } ) |
| 12 |
|
sneq |
|- ( f = <. ( ( Base ` C ) X. ( Base ` D ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) >. -> { f } = { <. ( ( Base ` C ) X. ( Base ` D ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) >. } ) |
| 13 |
12
|
eqeq2d |
|- ( f = <. ( ( Base ` C ) X. ( Base ` D ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) >. -> ( ( C Func D ) = { f } <-> ( C Func D ) = { <. ( ( Base ` C ) X. ( Base ` D ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( ( ( Base ` C ) X. ( Base ` D ) ) ` x ) ( Hom ` D ) ( ( ( Base ` C ) X. ( Base ` D ) ) ` y ) ) ) ) >. } ) ) |
| 14 |
4 11 13
|
spcedv |
|- ( ph -> E. f ( C Func D ) = { f } ) |
| 15 |
|
eusn |
|- ( E! f f e. ( C Func D ) <-> E. f ( C Func D ) = { f } ) |
| 16 |
14 15
|
sylibr |
|- ( ph -> E! f f e. ( C Func D ) ) |