| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functermceu.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
functermceu.d |
⊢ ( 𝜑 → 𝐷 ∈ TermCat ) |
| 3 |
|
opex |
⊢ 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 ∈ V |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 ∈ V ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 7 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 9 |
|
eqid |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) |
| 10 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) |
| 11 |
1 2 5 6 7 8 9 10
|
functermc2 |
⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = { 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 } ) |
| 12 |
|
sneq |
⊢ ( 𝑓 = 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 → { 𝑓 } = { 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 } ) |
| 13 |
12
|
eqeq2d |
⊢ ( 𝑓 = 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 → ( ( 𝐶 Func 𝐷 ) = { 𝑓 } ↔ ( 𝐶 Func 𝐷 ) = { 〈 ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) ) ) 〉 } ) ) |
| 14 |
4 11 13
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) |
| 15 |
|
eusn |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ↔ ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) |
| 16 |
14 15
|
sylibr |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |