| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulltermc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
fulltermc.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
fulltermc.d |
⊢ ( 𝜑 → 𝐷 ∈ TermCat ) |
| 4 |
|
fulltermc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 5 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 6 |
3
|
termcthind |
⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |
| 7 |
1 5 2 6 4
|
fullthinc |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ TermCat ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 10 |
1 9 4
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
| 11 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 12 |
11
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 13 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 14 |
13
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 15 |
8 9 12 14 5
|
termchomn0 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) |
| 16 |
|
biimt |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) ) |
| 18 |
|
con34b |
⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ↔ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 19 |
17 18
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 20 |
19
|
2ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 21 |
7 20
|
bitr4d |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |