Metamath Proof Explorer


Theorem fulltermc2

Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses fulltermc.b 𝐵 = ( Base ‘ 𝐶 )
fulltermc.h 𝐻 = ( Hom ‘ 𝐶 )
fulltermc.d ( 𝜑𝐷 ∈ TermCat )
fulltermc2.f ( 𝜑𝐹 ( 𝐶 Full 𝐷 ) 𝐺 )
fulltermc2.x ( 𝜑𝑋𝐵 )
fulltermc2.y ( 𝜑𝑌𝐵 )
Assertion fulltermc2 ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ )

Proof

Step Hyp Ref Expression
1 fulltermc.b 𝐵 = ( Base ‘ 𝐶 )
2 fulltermc.h 𝐻 = ( Hom ‘ 𝐶 )
3 fulltermc.d ( 𝜑𝐷 ∈ TermCat )
4 fulltermc2.f ( 𝜑𝐹 ( 𝐶 Full 𝐷 ) 𝐺 )
5 fulltermc2.x ( 𝜑𝑋𝐵 )
6 fulltermc2.y ( 𝜑𝑌𝐵 )
7 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) )
8 7 eqeq1d ( 𝑥 = 𝑋 → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑋 𝐻 𝑦 ) = ∅ ) )
9 8 notbid ( 𝑥 = 𝑋 → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ¬ ( 𝑋 𝐻 𝑦 ) = ∅ ) )
10 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
11 10 eqeq1d ( 𝑦 = 𝑌 → ( ( 𝑋 𝐻 𝑦 ) = ∅ ↔ ( 𝑋 𝐻 𝑌 ) = ∅ ) )
12 11 notbid ( 𝑦 = 𝑌 → ( ¬ ( 𝑋 𝐻 𝑦 ) = ∅ ↔ ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) )
13 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
14 1 13 isfull ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) ) )
15 4 14 sylib ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑦 ) ) ) )
16 15 simpld ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
17 1 2 3 16 fulltermc ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥𝐵𝑦𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) )
18 4 17 mpbid ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ )
19 9 12 18 5 6 rspc2dv ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ )