| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulltermc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
fulltermc.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
fulltermc.d |
⊢ ( 𝜑 → 𝐷 ∈ TermCat ) |
| 4 |
|
fulltermc2.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
| 5 |
|
fulltermc2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
fulltermc2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑋 𝐻 𝑦 ) = ∅ ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ¬ ( 𝑋 𝐻 𝑦 ) = ∅ ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝐻 𝑦 ) = ∅ ↔ ( 𝑋 𝐻 𝑌 ) = ∅ ) ) |
| 12 |
11
|
notbid |
⊢ ( 𝑦 = 𝑌 → ( ¬ ( 𝑋 𝐻 𝑦 ) = ∅ ↔ ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) ) |
| 13 |
|
fullfunc |
⊢ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
| 14 |
13
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 16 |
1 2 3 15
|
fulltermc |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 17 |
4 16
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) |
| 18 |
9 12 17 5 6
|
rspc2dv |
⊢ ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) |