Metamath Proof Explorer


Theorem fulltermc2

Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses fulltermc.b B = Base C
fulltermc.h H = Hom C
fulltermc.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
fulltermc2.f φ F C Full D G
fulltermc2.x φ X B
fulltermc2.y φ Y B
Assertion fulltermc2 φ ¬ X H Y =

Proof

Step Hyp Ref Expression
1 fulltermc.b B = Base C
2 fulltermc.h H = Hom C
3 fulltermc.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
4 fulltermc2.f φ F C Full D G
5 fulltermc2.x φ X B
6 fulltermc2.y φ Y B
7 oveq1 x = X x H y = X H y
8 7 eqeq1d x = X x H y = X H y =
9 8 notbid x = X ¬ x H y = ¬ X H y =
10 oveq2 y = Y X H y = X H Y
11 10 eqeq1d y = Y X H y = X H Y =
12 11 notbid y = Y ¬ X H y = ¬ X H Y =
13 eqid Hom D = Hom D
14 1 13 isfull F C Full D G F C Func D G x B y B ran x G y = F x Hom D F y
15 4 14 sylib φ F C Func D G x B y B ran x G y = F x Hom D F y
16 15 simpld φ F C Func D G
17 1 2 3 16 fulltermc φ F C Full D G x B y B ¬ x H y =
18 4 17 mpbid φ x B y B ¬ x H y =
19 9 12 18 5 6 rspc2dv φ ¬ X H Y =