Metamath Proof Explorer


Theorem fulltermc2

Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses fulltermc.b
|- B = ( Base ` C )
fulltermc.h
|- H = ( Hom ` C )
fulltermc.d
|- ( ph -> D e. TermCat )
fulltermc2.f
|- ( ph -> F ( C Full D ) G )
fulltermc2.x
|- ( ph -> X e. B )
fulltermc2.y
|- ( ph -> Y e. B )
Assertion fulltermc2
|- ( ph -> -. ( X H Y ) = (/) )

Proof

Step Hyp Ref Expression
1 fulltermc.b
 |-  B = ( Base ` C )
2 fulltermc.h
 |-  H = ( Hom ` C )
3 fulltermc.d
 |-  ( ph -> D e. TermCat )
4 fulltermc2.f
 |-  ( ph -> F ( C Full D ) G )
5 fulltermc2.x
 |-  ( ph -> X e. B )
6 fulltermc2.y
 |-  ( ph -> Y e. B )
7 oveq1
 |-  ( x = X -> ( x H y ) = ( X H y ) )
8 7 eqeq1d
 |-  ( x = X -> ( ( x H y ) = (/) <-> ( X H y ) = (/) ) )
9 8 notbid
 |-  ( x = X -> ( -. ( x H y ) = (/) <-> -. ( X H y ) = (/) ) )
10 oveq2
 |-  ( y = Y -> ( X H y ) = ( X H Y ) )
11 10 eqeq1d
 |-  ( y = Y -> ( ( X H y ) = (/) <-> ( X H Y ) = (/) ) )
12 11 notbid
 |-  ( y = Y -> ( -. ( X H y ) = (/) <-> -. ( X H Y ) = (/) ) )
13 eqid
 |-  ( Hom ` D ) = ( Hom ` D )
14 1 13 isfull
 |-  ( F ( C Full D ) G <-> ( F ( C Func D ) G /\ A. x e. B A. y e. B ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) )
15 4 14 sylib
 |-  ( ph -> ( F ( C Func D ) G /\ A. x e. B A. y e. B ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) )
16 15 simpld
 |-  ( ph -> F ( C Func D ) G )
17 1 2 3 16 fulltermc
 |-  ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B -. ( x H y ) = (/) ) )
18 4 17 mpbid
 |-  ( ph -> A. x e. B A. y e. B -. ( x H y ) = (/) )
19 9 12 18 5 6 rspc2dv
 |-  ( ph -> -. ( X H Y ) = (/) )