| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulltermc.b |
|- B = ( Base ` C ) |
| 2 |
|
fulltermc.h |
|- H = ( Hom ` C ) |
| 3 |
|
fulltermc.d |
|- ( ph -> D e. TermCat ) |
| 4 |
|
fulltermc2.f |
|- ( ph -> F ( C Full D ) G ) |
| 5 |
|
fulltermc2.x |
|- ( ph -> X e. B ) |
| 6 |
|
fulltermc2.y |
|- ( ph -> Y e. B ) |
| 7 |
|
oveq1 |
|- ( x = X -> ( x H y ) = ( X H y ) ) |
| 8 |
7
|
eqeq1d |
|- ( x = X -> ( ( x H y ) = (/) <-> ( X H y ) = (/) ) ) |
| 9 |
8
|
notbid |
|- ( x = X -> ( -. ( x H y ) = (/) <-> -. ( X H y ) = (/) ) ) |
| 10 |
|
oveq2 |
|- ( y = Y -> ( X H y ) = ( X H Y ) ) |
| 11 |
10
|
eqeq1d |
|- ( y = Y -> ( ( X H y ) = (/) <-> ( X H Y ) = (/) ) ) |
| 12 |
11
|
notbid |
|- ( y = Y -> ( -. ( X H y ) = (/) <-> -. ( X H Y ) = (/) ) ) |
| 13 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 14 |
1 13
|
isfull |
|- ( F ( C Full D ) G <-> ( F ( C Func D ) G /\ A. x e. B A. y e. B ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 15 |
4 14
|
sylib |
|- ( ph -> ( F ( C Func D ) G /\ A. x e. B A. y e. B ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 16 |
15
|
simpld |
|- ( ph -> F ( C Func D ) G ) |
| 17 |
1 2 3 16
|
fulltermc |
|- ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B -. ( x H y ) = (/) ) ) |
| 18 |
4 17
|
mpbid |
|- ( ph -> A. x e. B A. y e. B -. ( x H y ) = (/) ) |
| 19 |
9 12 18 5 6
|
rspc2dv |
|- ( ph -> -. ( X H Y ) = (/) ) |