| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functermc.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 2 |
|
functermc.e |
⊢ ( 𝜑 → 𝐸 ∈ TermCat ) |
| 3 |
|
functermc.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 4 |
|
functermc.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 5 |
|
functermc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 6 |
|
functermc.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 7 |
|
functermc.f |
⊢ 𝐹 = ( 𝐵 × 𝐶 ) |
| 8 |
|
functermc.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 10 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
| 11 |
4
|
fvexi |
⊢ 𝐶 ∈ V |
| 12 |
10 11
|
xpex |
⊢ ( 𝐵 × 𝐶 ) ∈ V |
| 13 |
7 12
|
eqeltri |
⊢ 𝐹 ∈ V |
| 14 |
10 10
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ V |
| 15 |
8 14
|
eqeltri |
⊢ 𝐺 ∈ V |
| 16 |
13 15
|
relsnop |
⊢ Rel { 〈 𝐹 , 𝐺 〉 } |
| 17 |
1 2 3 4 5 6 7 8
|
functermc |
⊢ ( 𝜑 → ( 𝑧 ( 𝐷 Func 𝐸 ) 𝑤 ↔ ( 𝑧 = 𝐹 ∧ 𝑤 = 𝐺 ) ) ) |
| 18 |
|
brsnop |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑧 { 〈 𝐹 , 𝐺 〉 } 𝑤 ↔ ( 𝑧 = 𝐹 ∧ 𝑤 = 𝐺 ) ) ) |
| 19 |
13 15 18
|
mp2an |
⊢ ( 𝑧 { 〈 𝐹 , 𝐺 〉 } 𝑤 ↔ ( 𝑧 = 𝐹 ∧ 𝑤 = 𝐺 ) ) |
| 20 |
17 19
|
bitr4di |
⊢ ( 𝜑 → ( 𝑧 ( 𝐷 Func 𝐸 ) 𝑤 ↔ 𝑧 { 〈 𝐹 , 𝐺 〉 } 𝑤 ) ) |
| 21 |
9 16 20
|
eqbrrdiv |
⊢ ( 𝜑 → ( 𝐷 Func 𝐸 ) = { 〈 𝐹 , 𝐺 〉 } ) |