| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functermc.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 2 |
|
functermc.e |
⊢ ( 𝜑 → 𝐸 ∈ TermCat ) |
| 3 |
|
functermc.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 4 |
|
functermc.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 5 |
|
functermc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 6 |
|
functermc.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 7 |
|
functermc.f |
⊢ 𝐹 = ( 𝐵 × 𝐶 ) |
| 8 |
|
functermc.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 10 |
3 4 9
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) → 𝐾 : 𝐵 ⟶ 𝐶 ) |
| 11 |
2 4
|
termcbas |
⊢ ( 𝜑 → ∃ 𝑧 𝐶 = { 𝑧 } ) |
| 12 |
|
feq3 |
⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 : 𝐵 ⟶ { 𝑧 } ) ) |
| 13 |
|
vex |
⊢ 𝑧 ∈ V |
| 14 |
13
|
fconst2 |
⊢ ( 𝐾 : 𝐵 ⟶ { 𝑧 } ↔ 𝐾 = ( 𝐵 × { 𝑧 } ) ) |
| 15 |
|
xpeq2 |
⊢ ( 𝐶 = { 𝑧 } → ( 𝐵 × 𝐶 ) = ( 𝐵 × { 𝑧 } ) ) |
| 16 |
7 15
|
eqtrid |
⊢ ( 𝐶 = { 𝑧 } → 𝐹 = ( 𝐵 × { 𝑧 } ) ) |
| 17 |
16
|
eqeq2d |
⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 = 𝐹 ↔ 𝐾 = ( 𝐵 × { 𝑧 } ) ) ) |
| 18 |
14 17
|
bitr4id |
⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ { 𝑧 } ↔ 𝐾 = 𝐹 ) ) |
| 19 |
12 18
|
bitrd |
⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 = 𝐹 ) ) |
| 20 |
19
|
exlimiv |
⊢ ( ∃ 𝑧 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 = 𝐹 ) ) |
| 21 |
11 20
|
syl |
⊢ ( 𝜑 → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 = 𝐹 ) ) |
| 22 |
21
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐾 : 𝐵 ⟶ 𝐶 ) → 𝐾 = 𝐹 ) |
| 23 |
10 22
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) → 𝐾 = 𝐹 ) |
| 24 |
2
|
termcthind |
⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) |
| 25 |
13
|
fconst |
⊢ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ { 𝑧 } |
| 26 |
16
|
feq1d |
⊢ ( 𝐶 = { 𝑧 } → ( 𝐹 : 𝐵 ⟶ 𝐶 ↔ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ 𝐶 ) ) |
| 27 |
|
feq3 |
⊢ ( 𝐶 = { 𝑧 } → ( ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ 𝐶 ↔ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ { 𝑧 } ) ) |
| 28 |
26 27
|
bitrd |
⊢ ( 𝐶 = { 𝑧 } → ( 𝐹 : 𝐵 ⟶ 𝐶 ↔ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ { 𝑧 } ) ) |
| 29 |
25 28
|
mpbiri |
⊢ ( 𝐶 = { 𝑧 } → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 30 |
29
|
exlimiv |
⊢ ( ∃ 𝑧 𝐶 = { 𝑧 } → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 31 |
11 30
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 32 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐸 ∈ TermCat ) |
| 33 |
31
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 34 |
33
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 35 |
31
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 36 |
35
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 37 |
32 4 34 36 6
|
termchomn0 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ¬ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
| 38 |
37
|
pm2.21d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 39 |
38
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 40 |
3 4 5 6 1 24 31 8 39
|
functhinc |
⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐿 ↔ 𝐿 = 𝐺 ) ) |
| 41 |
23 40
|
functermclem |
⊢ ( 𝜑 → ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) ) |