| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functermclem.1 |
⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐾 = 𝐹 ) |
| 2 |
|
functermclem.2 |
⊢ ( 𝜑 → ( 𝐹 𝑅 𝐿 ↔ 𝐿 = 𝐺 ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐾 𝑅 𝐿 ) |
| 4 |
1 3
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐹 𝑅 𝐿 ) |
| 5 |
2
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 𝑅 𝐿 ) → 𝐿 = 𝐺 ) |
| 6 |
4 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐿 = 𝐺 ) |
| 7 |
1 6
|
jca |
⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) |
| 8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) → 𝐾 = 𝐹 ) |
| 9 |
2
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝐺 ) → 𝐹 𝑅 𝐿 ) |
| 10 |
9
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) → 𝐹 𝑅 𝐿 ) |
| 11 |
8 10
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) → 𝐾 𝑅 𝐿 ) |
| 12 |
7 11
|
impbida |
⊢ ( 𝜑 → ( 𝐾 𝑅 𝐿 ↔ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) ) |