Metamath Proof Explorer


Theorem functermclem

Description: Lemma for functermc . (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses functermclem.1 ( ( 𝜑𝐾 𝑅 𝐿 ) → 𝐾 = 𝐹 )
functermclem.2 ( 𝜑 → ( 𝐹 𝑅 𝐿𝐿 = 𝐺 ) )
Assertion functermclem ( 𝜑 → ( 𝐾 𝑅 𝐿 ↔ ( 𝐾 = 𝐹𝐿 = 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 functermclem.1 ( ( 𝜑𝐾 𝑅 𝐿 ) → 𝐾 = 𝐹 )
2 functermclem.2 ( 𝜑 → ( 𝐹 𝑅 𝐿𝐿 = 𝐺 ) )
3 simpr ( ( 𝜑𝐾 𝑅 𝐿 ) → 𝐾 𝑅 𝐿 )
4 1 3 eqbrtrrd ( ( 𝜑𝐾 𝑅 𝐿 ) → 𝐹 𝑅 𝐿 )
5 2 biimpa ( ( 𝜑𝐹 𝑅 𝐿 ) → 𝐿 = 𝐺 )
6 4 5 syldan ( ( 𝜑𝐾 𝑅 𝐿 ) → 𝐿 = 𝐺 )
7 1 6 jca ( ( 𝜑𝐾 𝑅 𝐿 ) → ( 𝐾 = 𝐹𝐿 = 𝐺 ) )
8 simprl ( ( 𝜑 ∧ ( 𝐾 = 𝐹𝐿 = 𝐺 ) ) → 𝐾 = 𝐹 )
9 2 biimpar ( ( 𝜑𝐿 = 𝐺 ) → 𝐹 𝑅 𝐿 )
10 9 adantrl ( ( 𝜑 ∧ ( 𝐾 = 𝐹𝐿 = 𝐺 ) ) → 𝐹 𝑅 𝐿 )
11 8 10 eqbrtrd ( ( 𝜑 ∧ ( 𝐾 = 𝐹𝐿 = 𝐺 ) ) → 𝐾 𝑅 𝐿 )
12 7 11 impbida ( 𝜑 → ( 𝐾 𝑅 𝐿 ↔ ( 𝐾 = 𝐹𝐿 = 𝐺 ) ) )