Metamath Proof Explorer


Theorem functermclem

Description: Lemma for functermc . (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses functermclem.1 φ K R L K = F
functermclem.2 φ F R L L = G
Assertion functermclem φ K R L K = F L = G

Proof

Step Hyp Ref Expression
1 functermclem.1 φ K R L K = F
2 functermclem.2 φ F R L L = G
3 simpr φ K R L K R L
4 1 3 eqbrtrrd φ K R L F R L
5 2 biimpa φ F R L L = G
6 4 5 syldan φ K R L L = G
7 1 6 jca φ K R L K = F L = G
8 simprl φ K = F L = G K = F
9 2 biimpar φ L = G F R L
10 9 adantrl φ K = F L = G F R L
11 8 10 eqbrtrd φ K = F L = G K R L
12 7 11 impbida φ K R L K = F L = G