Metamath Proof Explorer


Theorem functermc

Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses functermc.d φ D Cat
functermc.e No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
functermc.b B = Base D
functermc.c C = Base E
functermc.h H = Hom D
functermc.j J = Hom E
functermc.f F = B × C
functermc.g G = x B , y B x H y × F x J F y
Assertion functermc φ K D Func E L K = F L = G

Proof

Step Hyp Ref Expression
1 functermc.d φ D Cat
2 functermc.e Could not format ( ph -> E e. TermCat ) : No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
3 functermc.b B = Base D
4 functermc.c C = Base E
5 functermc.h H = Hom D
6 functermc.j J = Hom E
7 functermc.f F = B × C
8 functermc.g G = x B , y B x H y × F x J F y
9 simpr φ K D Func E L K D Func E L
10 3 4 9 funcf1 φ K D Func E L K : B C
11 2 4 termcbas φ z C = z
12 feq3 C = z K : B C K : B z
13 vex z V
14 13 fconst2 K : B z K = B × z
15 xpeq2 C = z B × C = B × z
16 7 15 eqtrid C = z F = B × z
17 16 eqeq2d C = z K = F K = B × z
18 14 17 bitr4id C = z K : B z K = F
19 12 18 bitrd C = z K : B C K = F
20 19 exlimiv z C = z K : B C K = F
21 11 20 syl φ K : B C K = F
22 21 biimpa φ K : B C K = F
23 10 22 syldan φ K D Func E L K = F
24 2 termcthind φ E ThinCat
25 13 fconst B × z : B z
26 16 feq1d C = z F : B C B × z : B C
27 feq3 C = z B × z : B C B × z : B z
28 26 27 bitrd C = z F : B C B × z : B z
29 25 28 mpbiri C = z F : B C
30 29 exlimiv z C = z F : B C
31 11 30 syl φ F : B C
32 2 adantr Could not format ( ( ph /\ ( z e. B /\ w e. B ) ) -> E e. TermCat ) : No typesetting found for |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> E e. TermCat ) with typecode |-
33 31 ffvelcdmda φ z B F z C
34 33 adantrr φ z B w B F z C
35 31 ffvelcdmda φ w B F w C
36 35 adantrl φ z B w B F w C
37 32 4 34 36 6 termchomn0 φ z B w B ¬ F z J F w =
38 37 pm2.21d φ z B w B F z J F w = z H w =
39 38 ralrimivva φ z B w B F z J F w = z H w =
40 3 4 5 6 1 24 31 8 39 functhinc φ F D Func E L L = G
41 23 40 functermclem φ K D Func E L K = F L = G