Metamath Proof Explorer


Theorem functhinc

Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered ( catprs2 ). (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinc.b B=BaseD
functhinc.c C=BaseE
functhinc.h H=HomD
functhinc.j J=HomE
functhinc.d φDCat
functhinc.e No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
functhinc.f φF:BC
functhinc.k K=xB,yBxHy×FxJFy
functhinc.1 φzBwBFzJFw=zHw=
Assertion functhinc φFDFuncEGG=K

Proof

Step Hyp Ref Expression
1 functhinc.b B=BaseD
2 functhinc.c C=BaseE
3 functhinc.h H=HomD
4 functhinc.j J=HomE
5 functhinc.d φDCat
6 functhinc.e Could not format ( ph -> E e. ThinCat ) : No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
7 functhinc.f φF:BC
8 functhinc.k K=xB,yBxHy×FxJFy
9 functhinc.1 φzBwBFzJFw=zHw=
10 eqid IdD=IdD
11 eqid IdE=IdE
12 eqid compD=compD
13 eqid compE=compE
14 6 thinccd φECat
15 1 2 3 4 10 11 12 13 5 14 isfunc φFDFuncEGF:BCGcB×BF1stcJF2ndcHcaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbf
16 3anass F:BCGcB×BF1stcJF2ndcHcaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbfF:BCGcB×BF1stcJF2ndcHcaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbf
17 15 16 bitrdi φFDFuncEGF:BCGcB×BF1stcJF2ndcHcaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbf
18 7 17 mpbirand φFDFuncEGGcB×BF1stcJF2ndcHcaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbf
19 funcf2lem GcB×BF1stcJF2ndcHcGVGFnB×BvBuBvGu:vHuFvJFu
20 simprl φvBuBvB
21 simprr φvBuBuB
22 9 adantr φvBuBzBwBFzJFw=zHw=
23 20 21 22 functhinclem2 φvBuBFvJFu=vHu=
24 1 2 3 4 6 7 8 23 functhinclem1 φGVGFnB×BvBuBvGu:vHuFvJFuG=K
25 19 24 bitrid φGcB×BF1stcJF2ndcHcG=K
26 25 anbi1d φGcB×BF1stcJF2ndcHcaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbfG=KaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbf
27 18 26 bitrd φFDFuncEGG=KaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbf
28 1 2 3 4 5 6 7 8 9 10 11 12 13 functhinclem4 φG=KaBaGaIdDa=IdEFabBcBfaHbgbHcaGcgabcompDcf=bGcgFaFbcompEFcaGbf
29 27 28 mpbiran3d φFDFuncEGG=K