Metamath Proof Explorer


Theorem functhinclem2

Description: Lemma for functhinc . (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinclem2.x φXB
functhinclem2.y φYB
functhinclem2.1 φxByBFxJFy=xHy=
Assertion functhinclem2 φFXJFY=XHY=

Proof

Step Hyp Ref Expression
1 functhinclem2.x φXB
2 functhinclem2.y φYB
3 functhinclem2.1 φxByBFxJFy=xHy=
4 simpl x=Xy=Yx=X
5 4 fveq2d x=Xy=YFx=FX
6 simpr x=Xy=Yy=Y
7 6 fveq2d x=Xy=YFy=FY
8 5 7 oveq12d x=Xy=YFxJFy=FXJFY
9 8 eqeq1d x=Xy=YFxJFy=FXJFY=
10 oveq12 x=Xy=YxHy=XHY
11 10 eqeq1d x=Xy=YxHy=XHY=
12 9 11 imbi12d x=Xy=YFxJFy=xHy=FXJFY=XHY=
13 12 rspc2gv XBYBxByBFxJFy=xHy=FXJFY=XHY=
14 13 imp XBYBxByBFxJFy=xHy=FXJFY=XHY=
15 1 2 3 14 syl21anc φFXJFY=XHY=