| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functhinclem1.b |
|
| 2 |
|
functhinclem1.c |
|
| 3 |
|
functhinclem1.h |
|
| 4 |
|
functhinclem1.j |
|
| 5 |
|
functhinclem1.e |
|
| 6 |
|
functhinclem1.f |
|
| 7 |
|
functhinclem1.k |
|
| 8 |
|
functhinclem1.1 |
|
| 9 |
|
simpl |
|
| 10 |
|
simpr2 |
|
| 11 |
|
simpr3 |
|
| 12 |
|
eqid |
|
| 13 |
8
|
adantlr |
|
| 14 |
5
|
ad2antrr |
|
| 15 |
6
|
ad2antrr |
|
| 16 |
|
simprl |
|
| 17 |
15 16
|
ffvelcdmd |
|
| 18 |
|
simprr |
|
| 19 |
15 18
|
ffvelcdmd |
|
| 20 |
14 17 19 2 4
|
thincmo |
|
| 21 |
12 13 20
|
mofeu |
|
| 22 |
|
oveq1 |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
oveq1d |
|
| 25 |
22 24
|
xpeq12d |
|
| 26 |
|
oveq2 |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
oveq2d |
|
| 29 |
26 28
|
xpeq12d |
|
| 30 |
|
ovex |
|
| 31 |
|
ovex |
|
| 32 |
30 31
|
xpex |
|
| 33 |
25 29 7 32
|
ovmpo |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
21 35
|
bitr4d |
|
| 37 |
36
|
2ralbidva |
|
| 38 |
|
simpr |
|
| 39 |
|
ovex |
|
| 40 |
|
ovex |
|
| 41 |
39 40
|
xpex |
|
| 42 |
7 41
|
fnmpoi |
|
| 43 |
|
eqfnov2 |
|
| 44 |
38 42 43
|
sylancl |
|
| 45 |
37 44
|
bitr4d |
|
| 46 |
45
|
biimpa |
|
| 47 |
9 10 11 46
|
syl21anc |
|
| 48 |
1
|
fvexi |
|
| 49 |
48 48
|
mpoex |
|
| 50 |
7 49
|
eqeltri |
|
| 51 |
|
eleq1 |
|
| 52 |
50 51
|
mpbiri |
|
| 53 |
52
|
adantl |
|
| 54 |
|
fneq1 |
|
| 55 |
42 54
|
mpbiri |
|
| 56 |
55
|
adantl |
|
| 57 |
|
simpl |
|
| 58 |
|
simpr |
|
| 59 |
45
|
biimpar |
|
| 60 |
57 56 58 59
|
syl21anc |
|
| 61 |
53 56 60
|
3jca |
|
| 62 |
47 61
|
impbida |
|