| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functhinclem1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
functhinclem1.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 3 |
|
functhinclem1.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 4 |
|
functhinclem1.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 5 |
|
functhinclem1.e |
⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) |
| 6 |
|
functhinclem1.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 7 |
|
functhinclem1.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 8 |
|
functhinclem1.1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝜑 ) |
| 10 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
| 11 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 12 |
|
eqid |
⊢ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 13 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 14 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐸 ∈ ThinCat ) |
| 15 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 17 |
15 16
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
| 19 |
15 18
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 20 |
14 17 19 2 4
|
thincmo |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ∃* 𝑚 𝑚 ∈ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 21 |
12 13 20
|
mofeu |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑧 𝐺 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 |
22 24
|
xpeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑧 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 29 |
26 28
|
xpeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 30 |
|
ovex |
⊢ ( 𝑧 𝐻 𝑤 ) ∈ V |
| 31 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∈ V |
| 32 |
30 31
|
xpex |
⊢ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ∈ V |
| 33 |
25 29 7 32
|
ovmpo |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 𝐾 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 𝐾 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 35 |
34
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ↔ ( 𝑧 𝐺 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 36 |
21 35
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 37 |
36
|
2ralbidva |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
| 39 |
|
ovex |
⊢ ( 𝑥 𝐻 𝑦 ) ∈ V |
| 40 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∈ V |
| 41 |
39 40
|
xpex |
⊢ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ∈ V |
| 42 |
7 41
|
fnmpoi |
⊢ 𝐾 Fn ( 𝐵 × 𝐵 ) |
| 43 |
|
eqfnov2 |
⊢ ( ( 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ 𝐾 Fn ( 𝐵 × 𝐵 ) ) → ( 𝐺 = 𝐾 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 44 |
38 42 43
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( 𝐺 = 𝐾 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 45 |
37 44
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ↔ 𝐺 = 𝐾 ) ) |
| 46 |
45
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) → 𝐺 = 𝐾 ) |
| 47 |
9 10 11 46
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) → 𝐺 = 𝐾 ) |
| 48 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 49 |
48 48
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ V |
| 50 |
7 49
|
eqeltri |
⊢ 𝐾 ∈ V |
| 51 |
|
eleq1 |
⊢ ( 𝐺 = 𝐾 → ( 𝐺 ∈ V ↔ 𝐾 ∈ V ) ) |
| 52 |
50 51
|
mpbiri |
⊢ ( 𝐺 = 𝐾 → 𝐺 ∈ V ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 ∈ V ) |
| 54 |
|
fneq1 |
⊢ ( 𝐺 = 𝐾 → ( 𝐺 Fn ( 𝐵 × 𝐵 ) ↔ 𝐾 Fn ( 𝐵 × 𝐵 ) ) ) |
| 55 |
42 54
|
mpbiri |
⊢ ( 𝐺 = 𝐾 → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
| 57 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝜑 ) |
| 58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐺 = 𝐾 ) |
| 59 |
45
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ) ∧ 𝐺 = 𝐾 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 60 |
57 56 58 59
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) |
| 61 |
53 56 60
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 62 |
47 61
|
impbida |
⊢ ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝐺 𝑤 ) : ( 𝑧 𝐻 𝑤 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) ) ↔ 𝐺 = 𝐾 ) ) |