| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functermc.d |
|- ( ph -> D e. Cat ) |
| 2 |
|
functermc.e |
|- ( ph -> E e. TermCat ) |
| 3 |
|
functermc.b |
|- B = ( Base ` D ) |
| 4 |
|
functermc.c |
|- C = ( Base ` E ) |
| 5 |
|
functermc.h |
|- H = ( Hom ` D ) |
| 6 |
|
functermc.j |
|- J = ( Hom ` E ) |
| 7 |
|
functermc.f |
|- F = ( B X. C ) |
| 8 |
|
functermc.g |
|- G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
| 9 |
|
simpr |
|- ( ( ph /\ K ( D Func E ) L ) -> K ( D Func E ) L ) |
| 10 |
3 4 9
|
funcf1 |
|- ( ( ph /\ K ( D Func E ) L ) -> K : B --> C ) |
| 11 |
2 4
|
termcbas |
|- ( ph -> E. z C = { z } ) |
| 12 |
|
feq3 |
|- ( C = { z } -> ( K : B --> C <-> K : B --> { z } ) ) |
| 13 |
|
vex |
|- z e. _V |
| 14 |
13
|
fconst2 |
|- ( K : B --> { z } <-> K = ( B X. { z } ) ) |
| 15 |
|
xpeq2 |
|- ( C = { z } -> ( B X. C ) = ( B X. { z } ) ) |
| 16 |
7 15
|
eqtrid |
|- ( C = { z } -> F = ( B X. { z } ) ) |
| 17 |
16
|
eqeq2d |
|- ( C = { z } -> ( K = F <-> K = ( B X. { z } ) ) ) |
| 18 |
14 17
|
bitr4id |
|- ( C = { z } -> ( K : B --> { z } <-> K = F ) ) |
| 19 |
12 18
|
bitrd |
|- ( C = { z } -> ( K : B --> C <-> K = F ) ) |
| 20 |
19
|
exlimiv |
|- ( E. z C = { z } -> ( K : B --> C <-> K = F ) ) |
| 21 |
11 20
|
syl |
|- ( ph -> ( K : B --> C <-> K = F ) ) |
| 22 |
21
|
biimpa |
|- ( ( ph /\ K : B --> C ) -> K = F ) |
| 23 |
10 22
|
syldan |
|- ( ( ph /\ K ( D Func E ) L ) -> K = F ) |
| 24 |
2
|
termcthind |
|- ( ph -> E e. ThinCat ) |
| 25 |
13
|
fconst |
|- ( B X. { z } ) : B --> { z } |
| 26 |
16
|
feq1d |
|- ( C = { z } -> ( F : B --> C <-> ( B X. { z } ) : B --> C ) ) |
| 27 |
|
feq3 |
|- ( C = { z } -> ( ( B X. { z } ) : B --> C <-> ( B X. { z } ) : B --> { z } ) ) |
| 28 |
26 27
|
bitrd |
|- ( C = { z } -> ( F : B --> C <-> ( B X. { z } ) : B --> { z } ) ) |
| 29 |
25 28
|
mpbiri |
|- ( C = { z } -> F : B --> C ) |
| 30 |
29
|
exlimiv |
|- ( E. z C = { z } -> F : B --> C ) |
| 31 |
11 30
|
syl |
|- ( ph -> F : B --> C ) |
| 32 |
2
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> E e. TermCat ) |
| 33 |
31
|
ffvelcdmda |
|- ( ( ph /\ z e. B ) -> ( F ` z ) e. C ) |
| 34 |
33
|
adantrr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( F ` z ) e. C ) |
| 35 |
31
|
ffvelcdmda |
|- ( ( ph /\ w e. B ) -> ( F ` w ) e. C ) |
| 36 |
35
|
adantrl |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( F ` w ) e. C ) |
| 37 |
32 4 34 36 6
|
termchomn0 |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> -. ( ( F ` z ) J ( F ` w ) ) = (/) ) |
| 38 |
37
|
pm2.21d |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 39 |
38
|
ralrimivva |
|- ( ph -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 40 |
3 4 5 6 1 24 31 8 39
|
functhinc |
|- ( ph -> ( F ( D Func E ) L <-> L = G ) ) |
| 41 |
23 40
|
functermclem |
|- ( ph -> ( K ( D Func E ) L <-> ( K = F /\ L = G ) ) ) |