Metamath Proof Explorer


Theorem functermc2

Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses functermc.d
|- ( ph -> D e. Cat )
functermc.e
|- ( ph -> E e. TermCat )
functermc.b
|- B = ( Base ` D )
functermc.c
|- C = ( Base ` E )
functermc.h
|- H = ( Hom ` D )
functermc.j
|- J = ( Hom ` E )
functermc.f
|- F = ( B X. C )
functermc.g
|- G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) )
Assertion functermc2
|- ( ph -> ( D Func E ) = { <. F , G >. } )

Proof

Step Hyp Ref Expression
1 functermc.d
 |-  ( ph -> D e. Cat )
2 functermc.e
 |-  ( ph -> E e. TermCat )
3 functermc.b
 |-  B = ( Base ` D )
4 functermc.c
 |-  C = ( Base ` E )
5 functermc.h
 |-  H = ( Hom ` D )
6 functermc.j
 |-  J = ( Hom ` E )
7 functermc.f
 |-  F = ( B X. C )
8 functermc.g
 |-  G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) )
9 relfunc
 |-  Rel ( D Func E )
10 3 fvexi
 |-  B e. _V
11 4 fvexi
 |-  C e. _V
12 10 11 xpex
 |-  ( B X. C ) e. _V
13 7 12 eqeltri
 |-  F e. _V
14 10 10 mpoex
 |-  ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) e. _V
15 8 14 eqeltri
 |-  G e. _V
16 13 15 relsnop
 |-  Rel { <. F , G >. }
17 1 2 3 4 5 6 7 8 functermc
 |-  ( ph -> ( z ( D Func E ) w <-> ( z = F /\ w = G ) ) )
18 brsnop
 |-  ( ( F e. _V /\ G e. _V ) -> ( z { <. F , G >. } w <-> ( z = F /\ w = G ) ) )
19 13 15 18 mp2an
 |-  ( z { <. F , G >. } w <-> ( z = F /\ w = G ) )
20 17 19 bitr4di
 |-  ( ph -> ( z ( D Func E ) w <-> z { <. F , G >. } w ) )
21 9 16 20 eqbrrdiv
 |-  ( ph -> ( D Func E ) = { <. F , G >. } )