Metamath Proof Explorer


Theorem functermc2

Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses functermc.d φ D Cat
functermc.e No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
functermc.b B = Base D
functermc.c C = Base E
functermc.h H = Hom D
functermc.j J = Hom E
functermc.f F = B × C
functermc.g G = x B , y B x H y × F x J F y
Assertion functermc2 φ D Func E = F G

Proof

Step Hyp Ref Expression
1 functermc.d φ D Cat
2 functermc.e Could not format ( ph -> E e. TermCat ) : No typesetting found for |- ( ph -> E e. TermCat ) with typecode |-
3 functermc.b B = Base D
4 functermc.c C = Base E
5 functermc.h H = Hom D
6 functermc.j J = Hom E
7 functermc.f F = B × C
8 functermc.g G = x B , y B x H y × F x J F y
9 relfunc Rel D Func E
10 3 fvexi B V
11 4 fvexi C V
12 10 11 xpex B × C V
13 7 12 eqeltri F V
14 10 10 mpoex x B , y B x H y × F x J F y V
15 8 14 eqeltri G V
16 13 15 relsnop Rel F G
17 1 2 3 4 5 6 7 8 functermc φ z D Func E w z = F w = G
18 brsnop F V G V z F G w z = F w = G
19 13 15 18 mp2an z F G w z = F w = G
20 17 19 bitr4di φ z D Func E w z F G w
21 9 16 20 eqbrrdiv φ D Func E = F G