| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thincciso2.c |
|- C = ( CatCat ` U ) |
| 2 |
|
thincciso2.b |
|- B = ( Base ` C ) |
| 3 |
|
thincciso2.u |
|- ( ph -> U e. V ) |
| 4 |
|
thincciso2.x |
|- ( ph -> X e. B ) |
| 5 |
|
thincciso2.y |
|- ( ph -> Y e. B ) |
| 6 |
|
thincciso4.i |
|- ( ph -> X ( ~=c ` C ) Y ) |
| 7 |
|
eqid |
|- ( Iso ` C ) = ( Iso ` C ) |
| 8 |
1
|
catccat |
|- ( U e. V -> C e. Cat ) |
| 9 |
3 8
|
syl |
|- ( ph -> C e. Cat ) |
| 10 |
7 2 9 4 5
|
cic |
|- ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X ( Iso ` C ) Y ) ) ) |
| 11 |
6 10
|
mpbid |
|- ( ph -> E. f f e. ( X ( Iso ` C ) Y ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ X e. ThinCat ) -> E. f f e. ( X ( Iso ` C ) Y ) ) |
| 13 |
3
|
ad2antrr |
|- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> U e. V ) |
| 14 |
4
|
ad2antrr |
|- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. B ) |
| 15 |
5
|
ad2antrr |
|- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. B ) |
| 16 |
|
simpr |
|- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> f e. ( X ( Iso ` C ) Y ) ) |
| 17 |
|
simplr |
|- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. ThinCat ) |
| 18 |
1 2 13 14 15 7 16 17
|
thincciso3 |
|- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. ThinCat ) |
| 19 |
12 18
|
exlimddv |
|- ( ( ph /\ X e. ThinCat ) -> Y e. ThinCat ) |
| 20 |
11
|
adantr |
|- ( ( ph /\ Y e. ThinCat ) -> E. f f e. ( X ( Iso ` C ) Y ) ) |
| 21 |
3
|
ad2antrr |
|- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> U e. V ) |
| 22 |
4
|
ad2antrr |
|- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. B ) |
| 23 |
5
|
ad2antrr |
|- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. B ) |
| 24 |
|
simpr |
|- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> f e. ( X ( Iso ` C ) Y ) ) |
| 25 |
|
simplr |
|- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. ThinCat ) |
| 26 |
1 2 21 22 23 7 24 25
|
thincciso2 |
|- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. ThinCat ) |
| 27 |
20 26
|
exlimddv |
|- ( ( ph /\ Y e. ThinCat ) -> X e. ThinCat ) |
| 28 |
19 27
|
impbida |
|- ( ph -> ( X e. ThinCat <-> Y e. ThinCat ) ) |